Multi-nucleon Transfer Reactions for Fission Study

Katsuhisa Nishio

Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN

DREB, 2016, Halifax

JAEA Tandem facility

Negative Ion Source

Potential Energy and Fission

Measured Fragment Mass/Charge Yield

Multi-nucleon Transfer Reaction and Fission

Multi-nucleon transfer reaction

can produce many compound nuclei including neutron rich isotopes. can populate wide-range excited states.

Fission barrier height Fission fragment angular distributions

. . .

Measured and Planned experiments using ¹⁸O beam and targets of ²³²Th, ²³⁸U, ²⁴⁸Cm, ²³⁷Np, ²⁴³Am, ²³¹Pa, ²⁴⁹Cf, ²⁵⁴Es

Experimental Setup

Some Photos

Target

Silicon ΔE -E detector

Ø 2.0 mm, Total = $1.0 \mu g$ ($0.1 \mu g$ is possible)

Fission fragment detector

Multi-Wire Proportional Counter (MWPC) 200 x 200 mm²

$\Delta E - E$ Spectrum

$$^{18}O + ^{248}Cm (E_{beam} = 162MeV)$$

Fission Events on Fragment Mass and Excitation Energy

Fission Fragment Mass Distributions from ¹⁸O + ²³²Th

associated with the shells around ¹³²Sn

Submitted to Phys. Lett. B

FFMDs of U, Np, Pu, Am, Cm Isotopes

¹⁸O + ²³⁸U (E_{lab}=157.5MeV)

Fragment Mass (u)

3D Langevin Calculation

Comparison with Langevin Calculation

Fission Fragment Angular Distribution

Summary

- (1) Multi-nucleon transfer reaction is a useful too study fission of for various nuclei and their excitation energy dependence.
- (2) Nice reproduction of the FFMDs was achieved using Langevin calculation.
- (3) <*J*²> is nearly proportional to the number of transferred nucleons, derived from fragment angular distribution.

Collaborator in Fission Study

Japan Atomic Energy Agency

K. Nishio, K. Hirose, R. Leguillon, H. Makii, I. Nishinaka, R. Orlandi, K. Tsukada, M. Asai University of York A. Andreyev Kyoto University T. Ohtsuki Tokyo Institute of Technology S. Chiba Kinki University Y. Aritomo China Institute of Atomic Energy THE UNIVERSITY of York S. Yan JAEA University of Bordeaux I. Tsekhanovich Niigata University N. Tamura, S. Goto

