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Motivations

Nuclear reaction in stars

• Radiative captures play an important role in the stellar nucleosynthesis

• Reactions rates are essential for describing quantitatively the evolution of the stars

• Radiative capture processes take place mostly at low energies (Gamow peaks

∼10 keV)⇒ Coulomb barrier strongly suppresses the capture cross sections⇒

out of reach of the experiments

• ⇒ NUCLEAR THEORY IS NEEDED to predict the capture cross sections at low

energies
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Outline

• An ab initio theoretical approach:
the no-core shell model with continuum (NCSMC)
• Application to the 3He(α, γ)7Be and 3H(α, γ)7Li reactions

in collaboration with
− P. Navrátil (TRIUMF)
− S. Quaglioni (LLNL)
− W. Horiuchi (Hokkaido U.)
− G. Hupin (IN2P3→CEA)
− F. Raimondi (TRIUMF→U. Surrey)

• Application to the 11C(p, γ)12N reaction
in collaboration with
− A. Calci (TRIUMF)
− P. Navrátil (TRIUMF)
− R. Roth (TUD)
− E. Gebrerufael (TUD)
− S. Quaglioni (LLNL)
− G. Hupin (CEA)
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Theoretical description
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Radiative capture

We NEED
• Unified approach to describe bound and

continuum states

⇒ Ψini and Ψfin

We use the No-Core Shell Model
with Continuum (NCSMC) approach
• Efficient way to calculate

photoemission/photoabsorption matrix
elements between bound and continuum
states

⇒ 〈Ψfin|ME
λµ|Ψini 〉
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Starting point

Microscopic Schrödinger equation

( A∑
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p2
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2mN
+
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vijk − Tc.m.
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|ΨJπT
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chiral NN (+3N) interactions
typically softened by the
similarity renormalization group method
to facilitate convergence

@@I ���
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D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003)
P. Navrátil, Few-Body Syst. 41, 117 (2007)
S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75, 061001 (2007)
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No-core shell model with continuum

~Ω
Nmax~Ω

N = 0

N = 1

N = Nmax +1

.
.
.

No-core shell model (NCSM)
• Slater determinants of harmonic oscillator functions

• Exact c.m. factorization

• Short- and medium-range correlations

• Bound-state method

+NCSM/resonating group method (RGM)
• NCSM cluster wave functions

• Long-range correlations

• Bound and scattering states; reactions

r

= No-core shell model with continuum (NCSMC)
[S. Baroni, P. Navratil, and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013).]
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NCSMC equations

|ΨJπT
A 〉 =

∑
λ

cJπT
λ︸ ︷︷ ︸

unknown

| 〉+
∑
ν

∫
dr r2 γ

JπT
ν (r)

r︸ ︷︷ ︸
unknown

Aν |
r

〉

• Variational amplitudes (cJπT
λ and γJπT

ν ) obtained by solving the NCSMC equations(
Eλδλλ′ 〈 |HAν |

r

〉
〈

r

|Aν′H| 〉 〈
r

|Aν′HAν |
r

〉

)(
c
γ

)
=

E
(

δλλ′ 〈 |Aν |
r

〉
〈

r

|Aν′ | 〉 〈
r

|Aν′Aν |
r

〉

)(
c
γ

)
• Most challenging: calculation of kernels (mostly due to Aν )

• Scattering matrix and asymptotic normalization coefficients from matching
solutions to known asymptotic with coupled-channel microscopic R-matrix method
(MRM) on Lagrange mesh [M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl.

Phys. A 640, 37 (1998)]

• Astrophysical S factor from the electromagnetic matrix elements between the
initial scattering state and the final bound state.
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The 3He(α, γ )7Be and 3H(α, γ )7Li astrophysical S factors are calculated within the no-core shell model 
with continuum using a renormalized chiral nucleon–nucleon interaction. The 3He(α, γ )7Be astrophysical 
S factors agree reasonably well with the experimental data while the 3H(α, γ )7Li ones are overestimated. 
The seven-nucleon bound and resonance states and the α + 3He/3H elastic scattering are also studied 
and compared with experiment. The low-lying resonance properties are rather well reproduced by our 
approach. At low energies, the s-wave phase shift, which is non-resonant, is overestimated.

© 2016 The Authors and Lawrence Livermore National Laboratory. Published by Elsevier B.V. This is an 
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

SCOAP3.

1. Introduction

The 3He(α, γ )7Be and 3H(α, γ )7Li radiative-capture processes 
hold great astrophysical significance. Their reaction rates for col-
lision energies between ∼20 and 500 keV in the center-of-mass 
(c.m.) frame are essential to calculate the primordial 7Li abundance 
in the universe [1–3]. In addition, standard solar model predic-
tions for the fraction of pp-chain branches resulting in 7Be versus 
8B neutrinos depend critically on the 3He(α, γ )7Be astrophysical S
factor at about 20 keV c.m. energy [4,5]. Because of the Coulomb 
repulsion between the fusing nuclei, these capture cross sections 
are strongly suppressed at such low energies and thus hard to 
measure directly in a laboratory.

Concerning the 3He(α, γ )7Be radiative capture, experiments 
performed by several groups in the last decade have led to quite 
accurate cross-section determinations for collision energies be-

* Corresponding author.
E-mail addresses: jdoheter@triumf.ca (J. Dohet-Eraly), navratil@triumf.ca

(P. Navrátil), quaglioni1@llnl.gov (S. Quaglioni), whoriuchi@nucl.sci.hokudai.ac.jp
(W. Horiuchi), hupin@ipno.in2p3.fr (G. Hupin), f.raimondi@surrey.ac.uk
(F. Raimondi).

1 Present address: CEA, DAM, DIF, F-91297 Arpajon, France.
2 Present address: Department of Physics, Faculty of Engineering and Physical Sci-

ences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.

tween about 90 keV and 3.1 MeV in the c.m. frame [6–13]. How-
ever, theoretical models or extrapolations are still needed to pro-
vide the capture cross section at solar energies [14]. In contrast, 
experimental data are less precise and also much less extensive for 
the 3H(α, γ )7Li radiative capture. The most recent experiment was 
performed twenty years ago resulting in measurements at collision 
energies between about 50 keV and 1.2 MeV in the c.m. frame [15].

Theoretically, these radiative captures have also generated much 
interest: from the development of pure external-capture models in 
the early 60’s [16] to the microscopic approaches from the late 80’s 
up to now [17–19,3,20] (see Ref. [5] for a short review). However, 
no parameter-free approach is able to simultaneously reproduce 
the latest experimental 3He(α, γ )7Be and 3H(α, γ )7Li astrophys-
ical S factors. To possibly fill this gap, an ab initio approach, re-
lying on a realistic inter-nucleon interaction, is highly desirable. 
The ab initio no-core shell model with continuum (NCSMC) [21,
22] has been successful in the simultaneous description of bound 
and scattering states associated with realistic Hamiltonians [23,24]. 
This approach can thus be naturally applied to the description of 
radiative-capture reactions, which involve both scattering (in the 
initial channels) and bound states (in the final channels).

In this letter, we present the study of the 3He(α, γ )7Be
and 3H(α, γ )7Li radiative-capture reactions with the NCSMC ap-
proach [21,22], using a renormalized chiral nucleon–nucleon (N N) 
interaction. This is the first NCSMC study where the lightest col-

http://dx.doi.org/10.1016/j.physletb.2016.04.021
0370-2693/© 2016 The Authors and Lawrence Livermore National Laboratory. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Motivations

• calculate the primordial 7Li abundance in the universe

• Relative rates of the 3He(α, γ)7Be and 3He(3He, 2p)4He determine which fraction
of pp-chain terminations resulting in 7Be or 8B neutrinos.

Extra motivation

• Coulomb barrier strongly suppresses the capture cross sections⇒ at low
energies out of reach of the experiments
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Motivations
• calculate the primordial 7Li abundance in the universe

• Relative rates of the 3He(α, γ)7Be and 3He(3He, 2p)4He determine which fraction
of pp-chain terminations resulting in 7Be or 8B neutrinos.

Extra motivation

• Coulomb barrier strongly suppresses the capture cross sections⇒ at low
energies out of reach of the experiments
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S factors agree reasonably well with the experimental data while the 3H(α, γ )7Li ones are overestimated. 
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approach. At low energies, the s-wave phase shift, which is non-resonant, is overestimated.
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1. Introduction

The 3He(α, γ )7Be and 3H(α, γ )7Li radiative-capture processes 
hold great astrophysical significance. Their reaction rates for col-
lision energies between ∼20 and 500 keV in the center-of-mass 
(c.m.) frame are essential to calculate the primordial 7Li abundance 
in the universe [1–3]. In addition, standard solar model predic-
tions for the fraction of pp-chain branches resulting in 7Be versus 
8B neutrinos depend critically on the 3He(α, γ )7Be astrophysical S
factor at about 20 keV c.m. energy [4,5]. Because of the Coulomb 
repulsion between the fusing nuclei, these capture cross sections 
are strongly suppressed at such low energies and thus hard to 
measure directly in a laboratory.

Concerning the 3He(α, γ )7Be radiative capture, experiments 
performed by several groups in the last decade have led to quite 
accurate cross-section determinations for collision energies be-
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tween about 90 keV and 3.1 MeV in the c.m. frame [6–13]. How-
ever, theoretical models or extrapolations are still needed to pro-
vide the capture cross section at solar energies [14]. In contrast, 
experimental data are less precise and also much less extensive for 
the 3H(α, γ )7Li radiative capture. The most recent experiment was 
performed twenty years ago resulting in measurements at collision 
energies between about 50 keV and 1.2 MeV in the c.m. frame [15].

Theoretically, these radiative captures have also generated much 
interest: from the development of pure external-capture models in 
the early 60’s [16] to the microscopic approaches from the late 80’s 
up to now [17–19,3,20] (see Ref. [5] for a short review). However, 
no parameter-free approach is able to simultaneously reproduce 
the latest experimental 3He(α, γ )7Be and 3H(α, γ )7Li astrophys-
ical S factors. To possibly fill this gap, an ab initio approach, re-
lying on a realistic inter-nucleon interaction, is highly desirable. 
The ab initio no-core shell model with continuum (NCSMC) [21,
22] has been successful in the simultaneous description of bound 
and scattering states associated with realistic Hamiltonians [23,24]. 
This approach can thus be naturally applied to the description of 
radiative-capture reactions, which involve both scattering (in the 
initial channels) and bound states (in the final channels).

In this letter, we present the study of the 3He(α, γ )7Be
and 3H(α, γ )7Li radiative-capture reactions with the NCSMC ap-
proach [21,22], using a renormalized chiral nucleon–nucleon (N N) 
interaction. This is the first NCSMC study where the lightest col-
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0370-2693/© 2016 The Authors and Lawrence Livermore National Laboratory. Published by Elsevier B.V. This is an open access article under the CC BY license 
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Motivations
• calculate the primordial 7Li abundance in the universe

• Relative rates of the 3He(α, γ)7Be and 3He(3He, 2p)4He determine which fraction
of pp-chain terminations resulting in 7Be or 8B neutrinos.

Extra motivation
• Coulomb barrier strongly suppresses the capture cross sections⇒ at low

energies out of reach of the experiments 7



α +3 He/3H phase shifts
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• NCSMC calculations with SRG N3LO NN potential (λ = 2.15 fm−1)

• Nmax = 12;~Ω = 20 MeV ; 3He/3H, α ground state

• 8 (6) eigenstates with negative (positive) parity of 7Be/7Li
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α +3 He phase shifts
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7Be spectrum
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7Li spectrum
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Phenomenological NCSMC

• NCSMC equations(
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• Considering Eλ as adjustable parameters to reproduce the bound-state and

resonance energies
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3He(α, γ)7Be and 3H(α, γ)7Li
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(Possible) quantitative agreement with experiments requires to include three-nucleon
forces! (underway)
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Applications

Reactions

• 11C + p scattering and 11C(p, γ)12N

Motivations

• Understanding the 12N spectrum (not well known experimentally)

• 11C(p, γ)12N is a part of the hot pp chain⇒ can bypass the triple-alpha process
to produce 12C

7Be(α, γ)11C(p, γ)12N(e+νe)12C

8B(α, p)11C(p, γ)12N(e+νe)12C

• 11C(p, γ)12N can compete with β+ decay and so impacts on the 11B synthesis in
novae

Extra motivation

• 11C + p scattering experiment planed at TUDA facility at TRIUMF

• 11C(p, γ)12N cannot be measured (at present) due to low yield of 11C beam
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12N spectrum

• NCSMC calculations with chiral NN + 3N

3-(2+)

12N with continuum effects
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11C + p scattering

• NCSMC calculations with chiral NN + 3N
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NCSMC calculations will be validated by measuring cross sections 16



11C(p, γ)12N
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Conclusion

• NCSMC provides a useful approach to study many reactions with
a high astrophysical interest

• NCSMC studies of 3He(α, γ)7Be, 3H(α, γ)7Li, and 7Be(p, γ)8B
with chiral NN + 3N interactions are underway

Thank you for your attention!
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