Type: Contributed Oral/Poster

Structure of 110 Zr - first spectroscopy and its implications for shell evolution and the r-process

Monday, 11 July 2016 15:55 (15 minutes)

A predicted Z=40 subshell closure in 110 Zr has long been considered a potential explanation for the excess of elemental abundances before the A=130 r-process peak. We performed the first spectroscopy of this nucleus at the RIKEN-RIBF facility, populating the low-lying levels via (p,2p) knockout and measuring the energies with the MINOS tracker and DALI2 NaI array. We will present first spectroscopy results, 111 Nb(p,2p) 110 Zr and 112 Mo(p,3p) 110 Zr cross sections, complementary analysis of neighboring nuclei, implications for structural evolution in the 50 <N<82 region, and the impact on our understanding of the formation of the A=130 r-process peak. Additionally, we report on a broader, ongoing study of (p,2p) and (p,3p) quasi-free scattering cross sections as measured during the SEASTAR (Shell Evolution And Search for Two-plus energies At RIBF) campaigns.

Primary author: PAUL, Nancy (CEA Saclay)

Co-author: THE SEASTAR COLLABORATION, Shell Evolution And Search for Two-plus energies At RIKEN

(CEA Saclay)

Presenter: PAUL, Nancy (CEA Saclay)

Track Classification: Shell evolution through direct reactions - Spectroscopy of nuclear levels and nuclear shapes through direct reactions