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Introduction

We present a formalism for inclusive deuteron—induced reactions. We thus
want to describe within the same framework:

./'

.-

elastic breakup

direct transfer

./'

compound nucleus .
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@ Direct neutron transfer: should be

compatible with existing theories.

Elastic deuteron breakup: “transfer”
to continuum states.

Non elastic breakup (direct transfer,
inelastic excitation and compound
nucleus formation): absorption above
and below neutron emission
threshold.

Important application in surrogate
reactions: obtain spin—parity
distributions, get rid of
Weisskopf—Ewing approximation.
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Historical background

breakup—fusion reactions
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Britt and Quinton, Phys. Rev. 124 (1961) 877

protons and a yields
bombarding 2°°Bi with
2C and '°0
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Kerman and McVoy, Ann. Phys.
122 (1979)197

Austern and Vincent, Phys.
Rev. C23 (1981) 1847

Udagawa and Tamura, Phys.
Rev. C24(1981) 1348

Last paper: Mastroleo,
Udagawa, Mustafa Phys. Rev.
C42 (1990) 683

Controversy between Udagawa
and Austern formalism left
somehow unresolved.
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Inclusive (d, p) reaction

let's concentrate in the reaction A+d— B(=A+n)+p
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we are interested in the inclusive cross section, i.e., we will sum over all
N C
final states ¢f.
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Neutron states in nuclei

scattering and resonances
o
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Mahaux, Bortignon, Broglia and Dasso Phys. Rep. 120 (1985) 1
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Derivation of the differential cross section

the double differential cross section with respect to the proton energy and
angle for the population of a specific final ¢

T =2 WED) (ol v W)

Sum over all channels, with the approximation W(+) ~ XdPdPA

2

d’c 27
N =
d0,dE, ~  hvg" )

X Y (xdbadal V [xpd) 6(E — Ep — ES) (95Xp| V | axada)

X4 — deuteron incoming wave, ¢4 — deuteron wavefunction,
Xp — proton outgoing wave ¢4 — target core ground state.
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Sum over final states

the imaginary part of the Green's function G is an operator representation
of the d—function,

95) (¥5]
E, — Hg + ie

=36

76(E — E, — ES) _|.mJZE

d%o

2
dQ,dE, _mp(Ep)3<Xd¢d¢A! V |xp) G (Xp| V | paXd®a)

@ We got rid of the (infinite) sum over final states,
@ but G is an extremely complex object!
o We still need to deal with that.
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Optical reduction of G

If the interaction V' do not act on ¢4

(XdPdPal V [Xp)G (xp| V | daXdPd)
= (Xa%d| V |xp) (04l Glda) (Xp| V | Xad®d)
= (Xd%d| V |xp) Gopt (Xp| V | Xaa)

where G, is the optical reduction of G

G I 1
= lim
P S0 E —Ey— Tp— Upn(ran) + i€’
now Uan(ran) = Van(ran) + iWan(ran) and thus G, are single—particle,
tractable operators.

The effective neutron—target interaction Ua,(ra,), a.k.a. optical
potential, a.k.a. self-energy can be provided by structure
calculations

Halifax, July 12th 2016 slide 8/27



Capture and elastic breakup cross sections

the imaginary part of Ggp: splits in two terms

elastic breakup .
A non elastic breakup

k2 —TN—
SGope = =7 ) _ |xn)d (E —Ep— 2m> (Xn| + Gopt Wan Gope.
kn "

we define the neutron wavefunction [1,) = Gopt (Xp| V' | Xd®d)

cross sections for non elastic breakup (NEB) and elastic breakup (EB)

d?c 2
T = ——p(E n Wn n/
o] 2 Ep) (ol Wan 1)
Fo 1 2 (B [oxexel V Il
dedEp - thp P p n XHXP Xd d )
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2—step process (post representation)
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Austern (post)-Udagawa (prior) controversy

The interaction V can be taken either in the prior or the post
representation,

o Austern (post)— V = Vpost ~ Vpn(rpn) (recently revived by Moro
and Lei, University of Sevilla)

e Udagawa (prior) — V = Vyior ~ Vaan(ran. £an)

in the prior representation, V' can act on ¢4 — the optical reduction gives
rise to new terms:

d2 post 2 ) )
deCOI-Ep:| — _ m (Ep) [% < wﬁnor‘ WAn |wﬁr/or>
+ 2 (VNN Walwf® ) + (6NN Wan [£5OV) ]

where VOV —

<Xp| Xd¢d>

The nature of the 2—step process depends on the representation )
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neutron wavefunctions

the neutron wavefunctions

|7wbn> — Gopt <Xp‘ v ‘Xd¢d>
can be computed for any neutron
2 : : : :

energy

bound state — E =2.5MeV
— E =7.5MeV

/-\’ transfer to resonant and

N~ non-resonant continuum
well described

scattering state N

. . . | . .
0 5 10 15 20 25 30
IBn

these wavefunctions are not eigenfunctions of the Hamiltonian
HAn = Tn + gfe( UAn)
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Breakup above neutron—emission threshold

proton angular differential cross section
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neutron transfer limit (isolated—resonance, first—order

approximation)

Let's consider the limit Wa, — 0 (single—particle width ' — 0). For an
energy E such that |E — E,| < D, (isolated resonance)

G~ lim |&n) (¢n] .
Pt Ways0 E — Ep — Ep — i{n| Wan|én)

with |¢p) eigenstate of Ha, = T+ R(Uan)

d?c .
lim (xq%d| V' [xp)

dQ,dE, " W0
|¢n> <¢n| WAn|¢n><¢)n|
(E - EP - En)2 + <¢n| WAn|¢n>2

(Xpl V [ xdPd) ,

we get the direct transfer cross section:
d’c
dQ,dE,

~ | <Xp¢n| V' | xd9d) |25(E —E, - E,)
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Validity of first order approximation

For Wy, small, we can apply first order perturbation theory,

NEB
4o oo Q)] 1 (Dn|Wan|dn) dan(Q)] transfer
dQ,dE, T (En — E)* + (¢n|Wan|pn)2 dQ
& —‘ co‘mplet‘e calc‘ulation
100 - first order i o : 4
g m iwAn=o.5 MeV] § § 7 S'W"-_TO M)
p o s CES : 7
e Py P - ‘ ;
E E E

we compare the complete calculation with the isolated—resonance,

first—order approximation for Wy, = 0.5 MeV, Wy, = 3 MeV and
Wa, = 10 MeV
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Application to surrogate reactions
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I ¥ Desired reaction: neutron induced fission, gamma emission and

neutron emission. 0 i
0ﬁssmn
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T
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% The surrogate method consists in producing the same compound
nucleus B* by bombarding a deuteron target with a radio active
beam of the nuclear species A. / °®

fission
)

-~
‘_’ ® ‘ ~_, gamma
d ~. emission

A
I
S neutron

emission

\.

J\.

¥ Atheoretical reaction formalism that describes the production
of all open channels B* is needed.

)
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Weisskopf-Ewing approximation

W-E approximation . .
Tar(E) = 3 0 (Eo 1, G (Eo 1, ) il VEE,) = 0N (E)GNE)

"V\/eisskopf—Ewing approximation: probability of y decay independent of J,
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Weisskopf—-Ewing is inaccurate for (n,~) |

Halifax, July 12th 2016 slide 17/27



Weisskopf—Ewin imation
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We need theory to predict J, 7 distributions J
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Disentangling elastic and non elastic breakup

BNb(d, p) (Mastroleo et al., Phys. Rev. C 42 (1990) 683)

' 93 =
proton singles Nb(d,p) E, 15:!\(/)lt‘:"vcompound nucleus spin distribution
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@ We obtain spin—parity distributions for the compound nucleus. ’

@ Contributions from elastic and non elastic breakup disentangled.
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Extending the formalism

100

compound "*Tm formation cross section
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We can also transfer charged clusters
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Summary, conclusions and some prospectives

We have presented a reaction formalism for inclusive
deuteron—induced reactions.

@ Valid for final neutron states from Fermi energy — to scattering
states

@ Disentangles elastic and non elastic breakup contributions to the
proton singles.

Probe of nuclear structure in the continuum.
Provides spin—parity distributions.

Useful for surrogate reactions.

Need for optical potentials.

Can easily be generalized to other three—body problems.

Can be extended for (p, d) reactions (hole states).
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The 3-body model

From H to Hsp
o H=Ty+ T+ Ha(§a) + Vpn(rpn) +
Van(ran,€a) + Vap(rap: €a)
o Hig = Tp + T,+ HA(fA) +
Vin(ron) + Uan(ran) + Uap(rap)

Halifax, July 12th 2016 slide 21/27



Observables: angular differential cross sections (neutron

bound states)

@ capture at resonant

energies compared with

e direct transfer (FRESCO)
calculations,
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@ capture cross sections
rescaled by a factor
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Observables: elastic breakup and capture cross sections

70
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- capture
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= total
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elastic breakup and capture cross sections as a function of the proton

energy. The Koning—Delaroche global optical potential has been used as

the Ua, interaction (Koning and Delaroche, Nucl. Phys. A 713 (2003)

231).
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Sub—threshold capture

0,

50|

W,,=0.5 MeV 1
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—orthogonality term
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Obtaining spin distributions
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Getting rid of Weisskopf-Ewing approximation

SRR RS RN RN R 2.5
A 235U(n,f) A Cramer et al. [6] 1 . .
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r | x = f in the low—energy regime
R 00
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