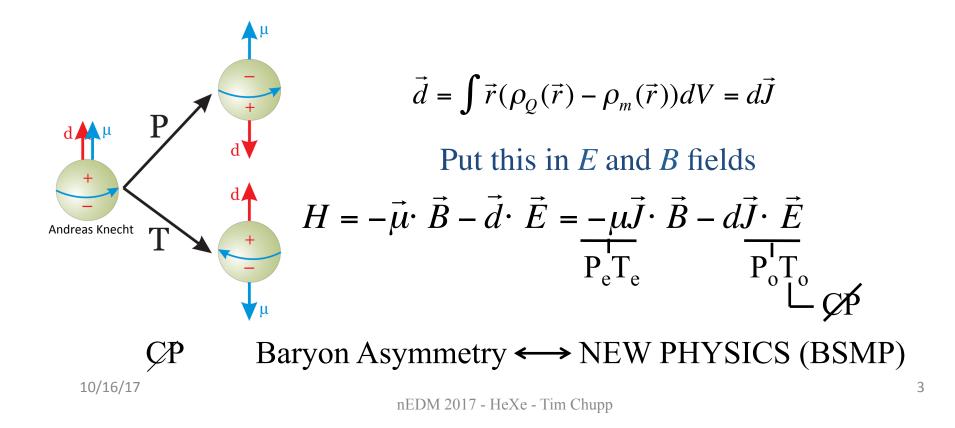
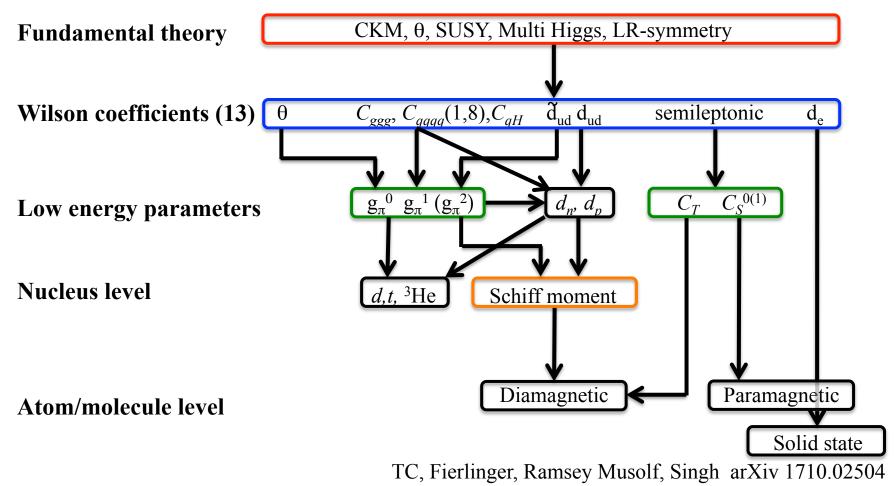

HeXe EDM – Motivation and Report

Collaboration - HeXeEDM

TUM Peter Fierlinger Florian Kuchler Stefan Stuber Mike Marino Jonas Meinel Julich FZ Earl Babcock PTB Wolfgang Kilian Issac Fan Allard Schnabel Sylvian Knappe Martin Burghoff Lutz Trahms

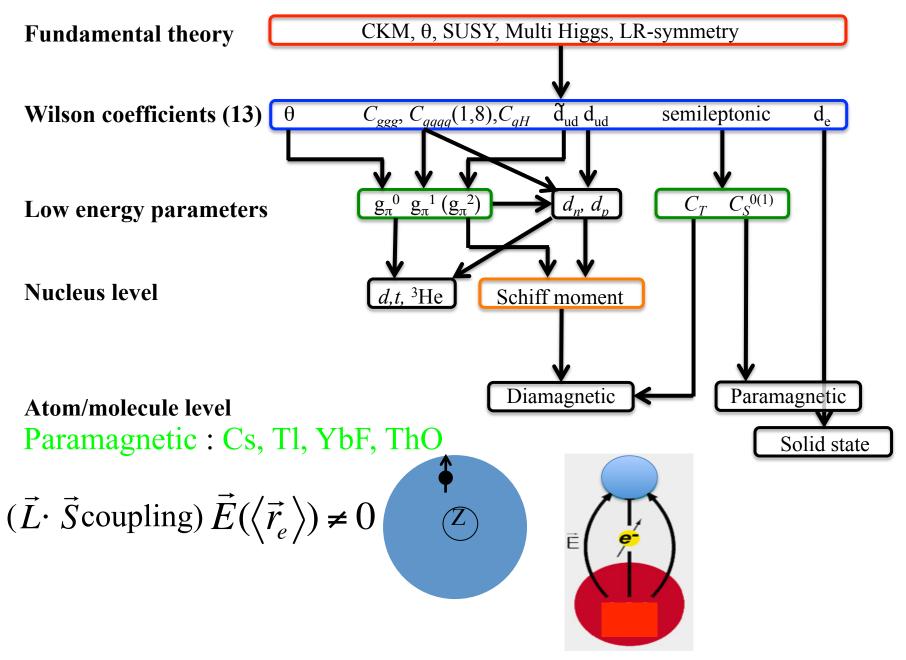
MSU Jaideep Singh UM Natasha Sachdeva Skyler Degenkolb (ILL) Fei Gong T.C.



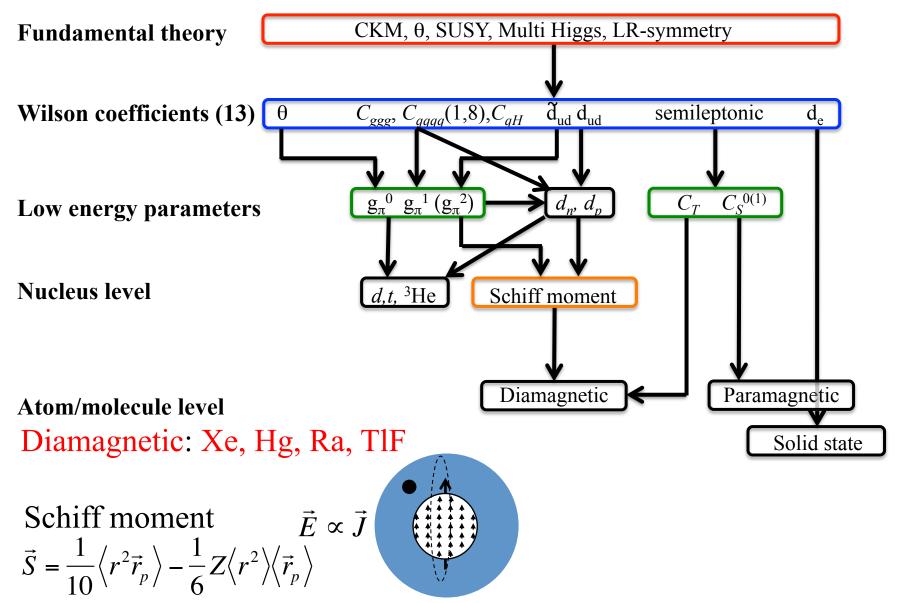

10/16/17

Motivations

- 1. $d_A(^{129}Xe) = (0.7 \pm 3.3)x10-27 \text{ cm}(2001!)$ We CAN do better.
- 2. Many sources of CP violation don't constrain individual EDMs
- 3. How we know ³He EDM is $<< 10^{-28}$ e cm (¹⁹⁹Hg, ¹²⁹Xe)
- 4. nEDM comagnetometer need $d_A(^{129}Xe) \le 10^{-27}$ e cm



Atomic/Molecular EDMs arise from many sources



$$d_A = \eta_e d_e + \kappa_s S(\theta_{QCD}, g_\pi) + (k_T C_T + k_S C_S) + h.o$$

Atomic/Molecular EDMs arise from many sources

Atomic/Molecular EDMs arise from many sources

EDM results

				-
System	Result	95% u.l.	ref.	
	Paramagnetic systemetry	ems		
Xe^m	$d_A = (0.7 \pm 1.4) \times 10^{-22}$	3.1×10^{-22} e-cm	a	
Cs	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	1.4×10^{-23} e-cm	b	
	$d_e = (-1.5 \pm 5.7) \times 10^{-26}$	1.2×10^{-25} e-cm		
Tl	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	1.1×10^{-24} e-cm	С	
	$d_e = (6.9 \pm 7.4) \times 10^{-28}$	1.9×10^{-27} e-cm		
YbF	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	1.2×10^{-27} e-cm	d	
ThO	$\omega^{\mathcal{N}E} = 2.6 \pm 5.8 \text{ mrad/s}$		e	
	$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	9.7×10^{-29} e-cm		
	$C_S = (-1.3 \pm 3.0) \times 10^{-9}$	6.4×10^{-9}		
HfF^+	$2\pi f^{BD} = 0.6 \pm 5.6 \text{ mrad/s}$		f	
	$d_e = (0.9 \pm 7.9) \times 10^{-29}$	16×10^{-29} e-cm		
	Diamagnetic syste	ems		
¹⁹⁹ Hg	$d_A = (2.2 \pm 3.1) \times 10^{-30}$	7.4×10^{-30} e-cm	g	
¹²⁹ Xe	$d_A = (0.7 \pm 3) \times 10^{-27}$	6.6×10^{-27} e-cm	h	
225 Ra	$d_A = (4 \pm 6) \times 10^{-24}$	1.4×10^{-23} e-cm	i	
TlF	$d = (-1.7 \pm 2.9) \times 10^{-23}$	6.5×10^{-23} e-cm	j	
n	$d_n = (-0.21 \pm 1.82) \times 10^{-26}$	3.6×10^{-26} e-cm	k	
	Particle systems			
μ	$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19}$	1.8×10^{-19} e-cm	l	
Λ	$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$	7.9×10^{-17} e-cm	m	
	v			

rately reported by the experimenters. References; b (Murthy

et al., 1989); c (Regan et al., 2002a); d (Hudson et al., 2002);

nEDM 2017 - HeXe - Tie (Baron et al., 2014); f (Graner et al., 2016); g (Cairncross et al., 2017) h (Rosenberry, 2001); i (Parker et al., 2015); j

(Cho, 1991); k (Baker et al., 2006); l (Farker et al., 2015); j (Cho, 1991); k (Baker et al., 2006); l (Bennett et al., 2009);

7

Sole-source analysis

Parameter	system	95% u.l.				
d_e	ThO	$9.2 \times 10^{-29} \text{ e-cm}$				
C_S	ThO	8.6×10^{-9}				
C_T	$^{199}\mathrm{Hg}$	3.6×10^{-10}				
$ar{g}^0_\pi$	¹⁹⁹ Hg	3.8×10^{-12}				
$\frac{\bar{g}_{\pi}^{0}}{\bar{g}_{\pi}^{1}}$	neutron	2.2×10^{-12}				
$ar{g}^1_\pi$	$^{199}\mathrm{Hg}$	3.8×10^{-13}				
\bar{g}^1_{π}	TlF	4.1×10^{-10}				
$\frac{\bar{g}_{\pi}^{1}}{\bar{g}_{\pi}^{2}}$	$^{199}\mathrm{Hg}$	2.6×10^{-11}				
\bar{d}_n^{sr}	neutron	3.3×10^{-26} e-cm				
$\frac{\bar{d}_p^{sr}}{\bar{d}_n^{sr}}$	TlF	8.7×10^{-23} e-cm				
$ar{d}_n^{sr}$	¹⁹⁹ Hg	2.0×10^{-25} e-cm				
	Other parameters					
d_d	$\approx 3/4d_n$	2.5×10^{-26} e-cm				
$\overline{ heta}$	$\approx \bar{g}_{\pi}^0/(0.02)$	1.9×10^{-10}				
$\tilde{d}_d - \tilde{d}_u$	$5 \times 10^{-15} \bar{g}_{\pi}^1$ e-cm	2×10^{-27} e-cm				

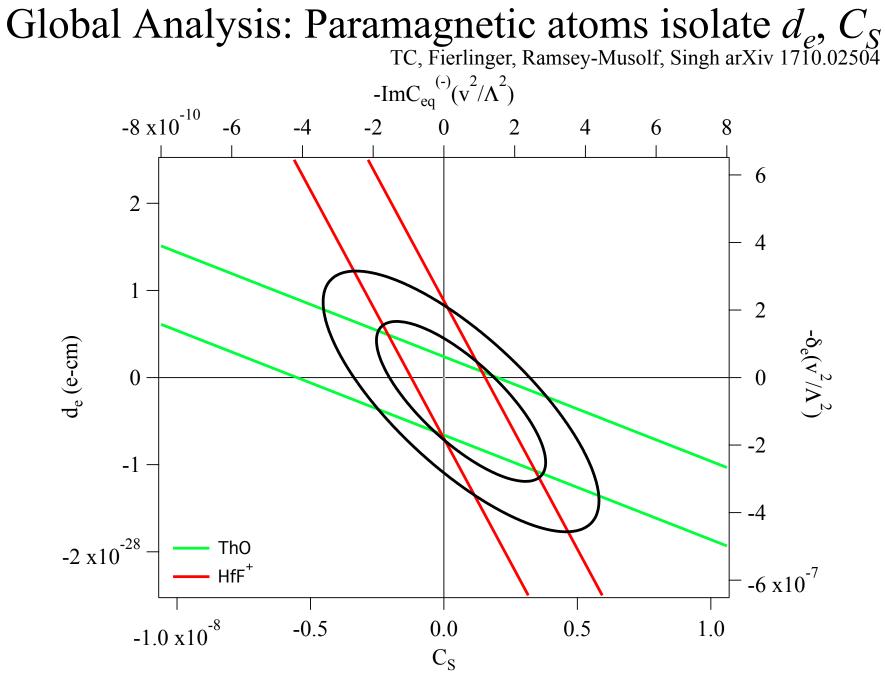
Global analysis

Permanent Electric Dipole $d_A = k_S S + \eta_e d_e + (k_T C_T + k_S C_S + k_P C_P).$ (10) Moments of Atoms and Molecules

Tim Chupp

FOCUS and MCTP, Physics Department, University of Michigan, Ann Arbor, MI 48109, USA Advances in Atomic, Molecular, and Optical Physics, Volume 59 © 2010 Elsevier Inc. ISSN 1049-250X, DOI: 10.1016/S1049-250X(10)59004-9 All rights reserved.

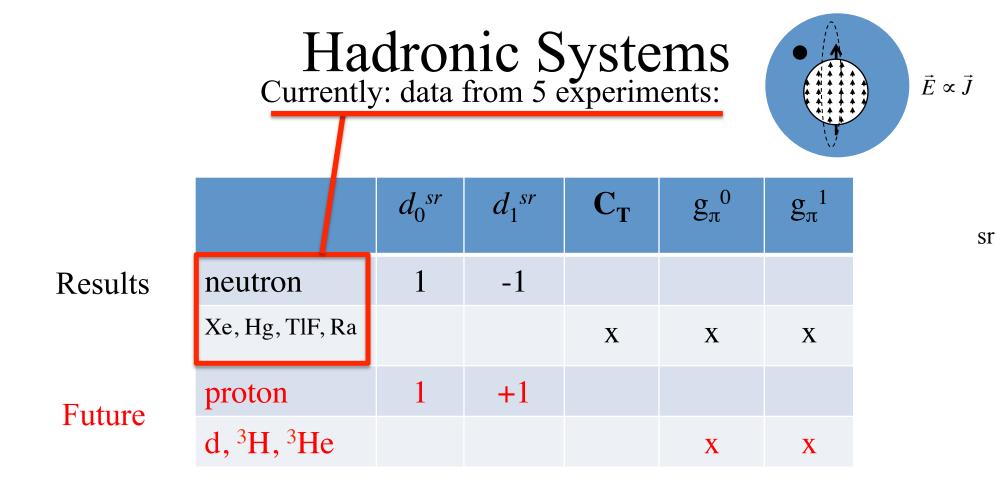
Tim: "Michael, how many EDM experiments do we need?" Michael: "Only the one that discovers an EDM."


Tim: "Oh – so now I know the one to work on!"

PHYSICAL REVIEW C 91, 035502 (2015)

Electric dipole moments: A global analysis

TC, Fierlinger, Ramsey Musolf, Singh arXiv 1710.02504



nEDM 2017 - HeXe - Tim Chupp

10

$$d_{n} = \bar{d}_{n}^{\mathrm{sr}} - \frac{eg_{A}\bar{g}_{\pi}^{(0)}}{8\pi^{2}F_{\pi}} \left\{ \ln \frac{m_{\pi}^{2}}{m_{N}^{2}} - \frac{\pi m_{\pi}}{2m_{N}} + \frac{\bar{g}_{\pi}^{(1)}}{4\bar{g}_{\pi}^{(0)}} \left(\kappa_{1} - \kappa_{0}\right) \frac{m_{\pi}^{2}}{m_{N}^{2}} \ln \frac{m_{\pi}^{2}}{m_{N}^{2}} \right\}$$
$$d_{A} = \alpha_{C_{T}}C_{T} + \kappa_{S} \left(a_{0}\bar{g}_{\pi}^{0} + a_{1}\bar{g}_{\pi}^{1} + a_{2}\bar{g}_{\pi}^{2}\right)$$

10/16/17

nEDM 2017 - HeXe - Tim Chupp

11

$$d = \alpha_{d_e} d_e + \alpha_{C_S} C_S + \alpha_{C_T} C_T + \alpha_{\bar{d}_n^{\mathrm{sr}}} \bar{d}_n^{\mathrm{sr}} + \alpha_{\bar{d}_p^{\mathrm{sr}}} \bar{d}_p^{\mathrm{sr}} + \alpha_{g_\pi^0} \bar{g}_\pi^0 + \alpha_{g_\pi^1} \bar{g}_\pi^1$$

$$d_i = \sum_i \alpha_{ij} C_j$$

System	$\partial d^{exp}/\partial d_e$	$\partial d^{exp}/\partial C_S$	$\partial d^{exp} / \partial C_T^{(0)}$	$\partial d^{exp}/\partial g^0_\pi$	$\partial d^{exp}/\partial g^1_{\pi}$	$\partial d^{exp}/\partial ar d^{sr}_n$
neutron	0	0	0	1.5×10^{-14}	1.4×10^{-16}	1
¹²⁹ Xe	-0.0008	-4.4×10^{-23}	-6.1×10^{-21}	-0.4×10^{-19}	-2.2×10^{-19}	1.7×10^{-5}
		-4.4- (-5.6)	-6.1- (-9.1)	-23.4-(1.8)	-19- (-1.1)	1.7 - 2.4
¹⁹⁹ Hg	-0.014	-5.9×10^{-22}	3.0×10^{-20}	-11.8×10^{-18}	0	-5.3×10^{-4}
	-0.014- 0.012		3.0-9.0	-38- (-9.9)	$(-4.9-1.6) \times 10^{-17}$	-7.7- (-5.2)
225 Ra			5.3×10^{-20}	1.7×10^{-15}	-6.9×10^{-15}	
				6.9-0.9	-27.5- (-3.8)	$(-1.6-0) \times 10^{-3}$
TlF	81	2.9×10^{-18}	2.7×10^{-16}	1.9×10^{-14}	-1.6×10^{-13}	0.46
				0.5-2		-0.5- 0.5

$$\chi^2(\mathbf{C_j}) = \sum_i \frac{(d_i^{\exp} - d_i)^2}{\sigma_{d_i^{\exp}}^2}$$

TC, Fierlinger, Ramsey-Musolf, Singh arXiv 1710.02504

10/16/17

nEDM 2017 - HeXe - Tim Chupp

Global Analysis $d_i = \sum_i \alpha_{ij} C_j$

$\left[\begin{array}{c} d_{Hg} \\ d_{Xe} \end{array}\right]$		-2.0×10^{-20} 4.0×10^{-21}	-3.8×10^{-18} -2.9×10^{-19}				$\begin{bmatrix} C_T \\ \tilde{g}^0_{\pi} \end{bmatrix}$
d_{TlF} d_n	=	1.1×10^{-16}	1.2×10^{-14} 1.5×10^{-14}	-1.6×10^{-13} 1.4×10^{-16}	0	×	${ ilde g}^1_\pi \ d^{sr}_n$

$$\begin{bmatrix} C_T \\ \tilde{g}_{\pi}^0 \\ \tilde{g}_{\pi}^1 \\ d_n^{sr} \end{bmatrix} = \begin{bmatrix} -1.48 \times 10^{19} & 1.83 \times 10^{20} & -2.52 \times 10^{14} & 0 \\ -1.85 \times 10^{17} & -9.64 \times 10^{17} & 1.32 \times 10^{12} & 0 \\ -2.41 \times 10^{16} & 5.36 \times 10^{16} & -6.32 \times 10^{12} & 0 \\ 2.78 \times 10^3 & 1.44 \times 10^4 & -1.90 \times 10^{-2} & 1 \end{bmatrix} \times \begin{bmatrix} d_{Hg} \\ d_{Xe} \\ d_{TIF} \\ d_n \end{bmatrix}$$

TC, Fierlinger, Ramsey-Musolf, Singh arXiv 1710.02504

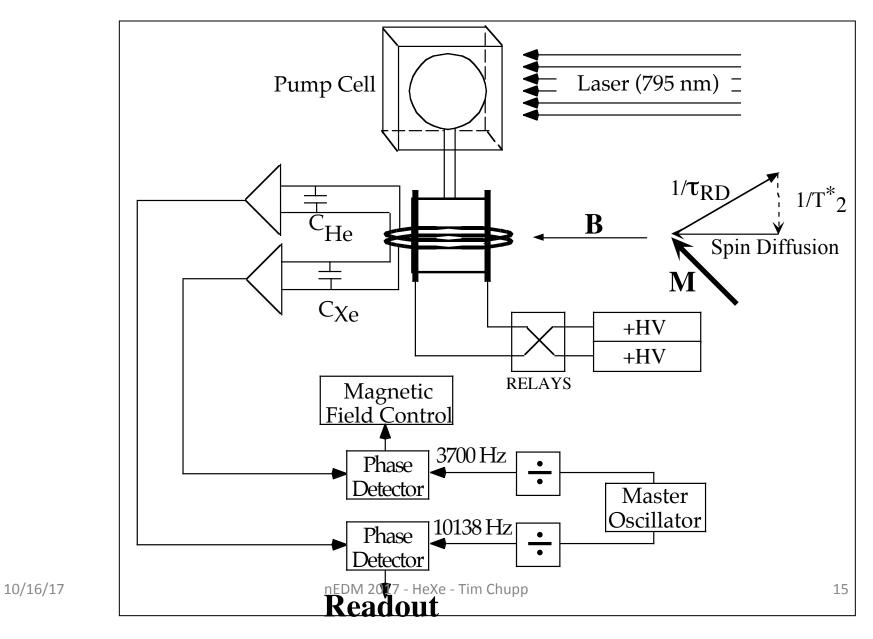
nEDM 2017 - HeXe - Tim Chupp

Impact and Discovery

	Current Limits	(95%)	$\frac{d_e \text{ (e-cm)}}{4.8 \times 10^{-27}}$	C_S 3.4×10^{-7}	$\frac{C_T}{2 \times 10^{-6}}$	$ar{g}_{\pi}^{(0)} \ 8 imes 10^{-9}$	$ar{g}_{\pi}^{(1)} \ 1.2 imes 10^{-9}$	\bar{d}_n (e-cm) 12×10^{-23}
System	Current (e-cm)	Projected]	Projected	sensitivity		
ThO	5×10^{-29}		4.7×10^{-27}					
Fr			2.3×10^{-28}					
"		10^{-28}	0.3×10^{-28}	0.2×10^{-7}				
¹²⁹ Xe	$3 imes 10^{-27}$	3×10^{-29}			3×10^{-7}	3×10^{-9}	1×10^{-9}	5×10^{-23}
Neutron/Xe	2×10^{-26}	$10^{-28}/3 \times 10^{-29}$			1×10^{-7}	1×10^{-9}	4×10^{-10}	2×10^{-23}
Ra - Rn		10^{-26}			5×10^{-8}	4×10^{-9}	1×10^{-9}	6×10^{-23}
"		10^{-27}			1×10^{-8}	1×10^{-9}	3×10^{-10}	
Neutron/Ra/Xe		$10^{-28}/3 \times 10^{-29}/10^{-27}$			6×10^{-9}	9×11^{-10}	3×10^{-10}	1×10^{-24}

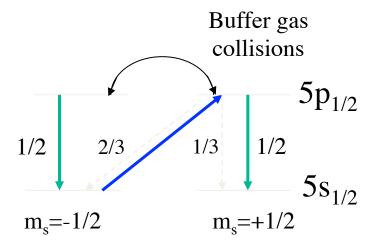
Current ¹²⁹Xe efforts

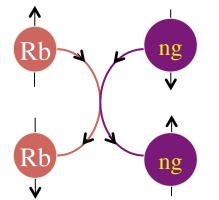
- TRIUMF/nEDM
- Active maser: Tokyo
- MIXed (Mainz/Heidelberg/Juelich)
- HeXe (TUM, PTB, MSU, Umich)

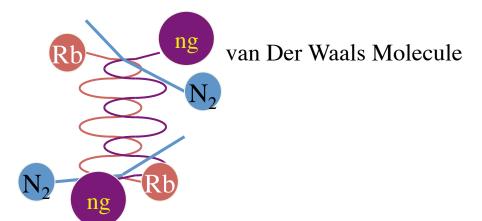

10/16/17

¹²⁹Xe Spin Exchange Pumped Zeeman Maser

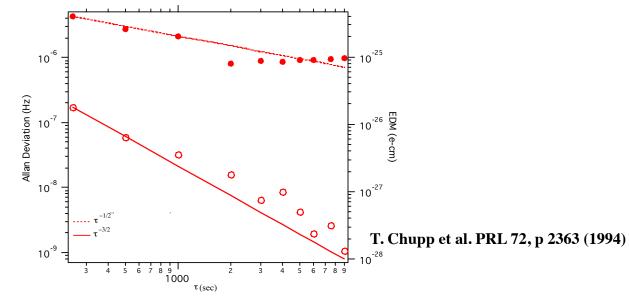
T. Chupp et al. PRL 72, p 2363 (1994)

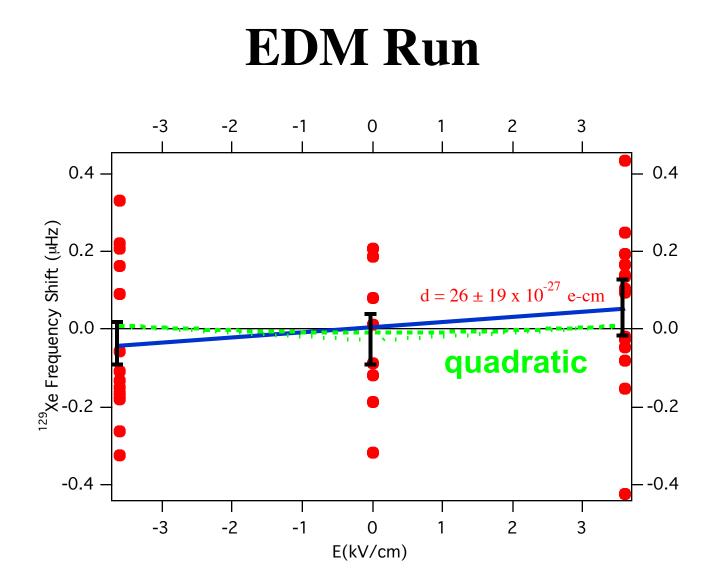

R. Stoner et al. PRL 77, p 3971 (1996)


D. Bear et al. PRA 57, p 5006 (1998)


Spin-Exchange Optical Pumping

- Optically pump the Rb with circularly polarized laser light.
- Spin-exchange collisions transfer the polarization to the ³He, ¹²⁹Xe, radon nuclei.




Binary Collision: $\tau \sim 10^{-12}$ sec.

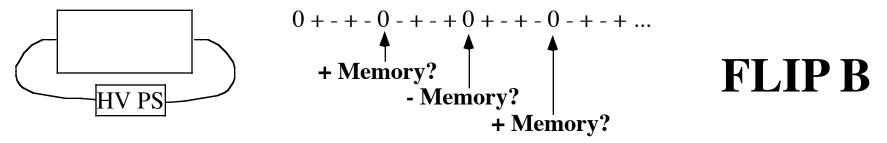
³He Comagnetometer

- EDM ~ Z^2 for Schiff moment and C_T
- Polarized by spin exchange-optical pumping
- Monitor magnetic fields due to leakage current
- Lock field to ¹²⁹Xe change E measure B with ³He

False EDM Signals

Cell Leakage Currents Two Species -- BUT not quite in the same place CHECK: (1µA loop around cell) d<1x10⁻²⁸ e-cm (20 pA) +HV

E² Correlations (Polarizability; Noise)


CHECK: $(dv/d(E^2) = (7\pm3)x10^{-9} Hz/kV^2/cm^2)$

Reference Oscillators Disturbed by E, E2

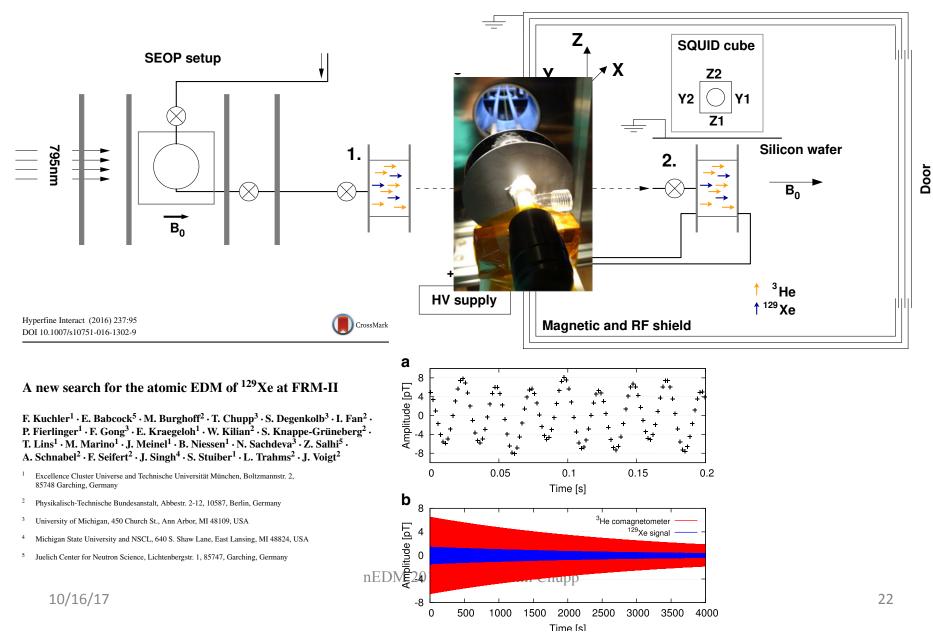
CHECK: (clock test) d<1x10⁻²⁸ e-cm

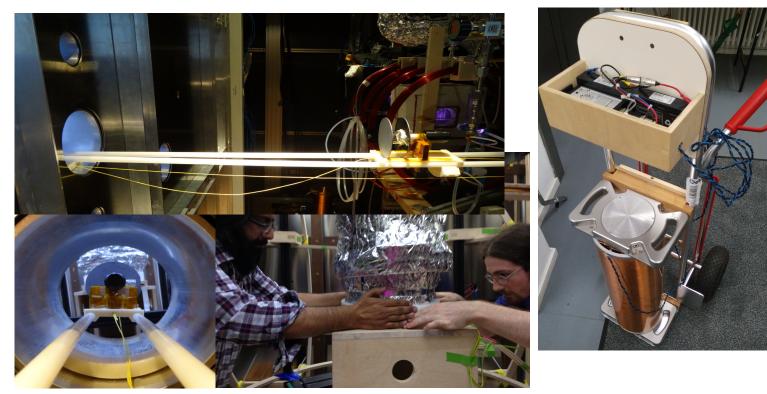
Charging Currents Magnetize Shields PLL Control Loop Droop Cavity Pulling Changes

CHECK: Zeros: d<1x10⁻²⁶ e-cm (stat)

Much smaller than statistical error.

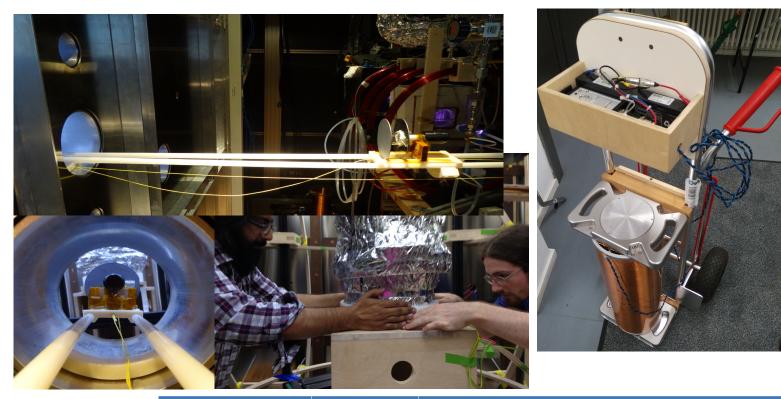
-HV


10/17/17


20

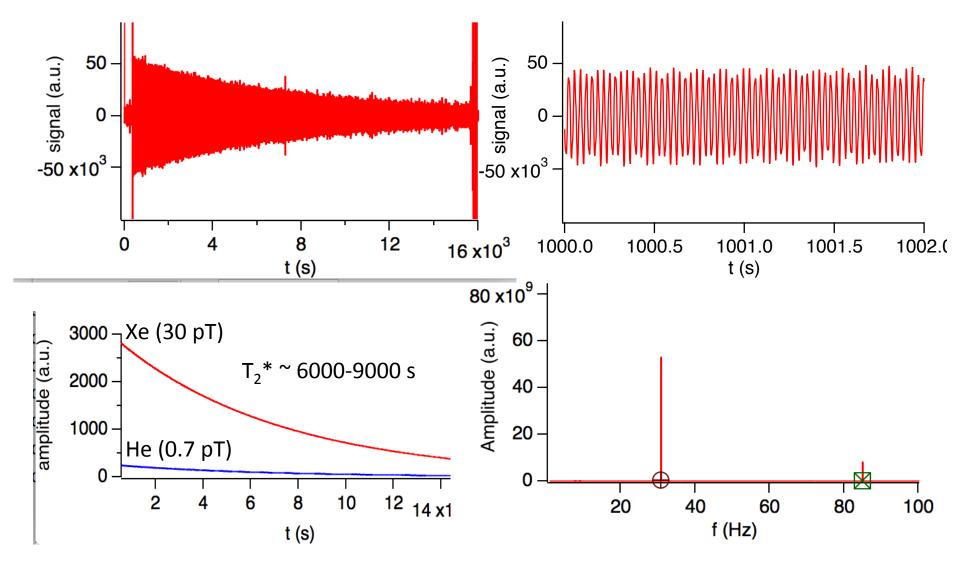
- High signal to noise SQUID detection
- Xe-129/He-3 comagnetometer
- \sim nT remnant *B*-field
- $\sim pT/cm$ gradients
- Stage-1 FRM-II/TUM 2-layer MSR
- Stage-2 PTB MSR2

nEDM 2017 - HeXe - Tim Chupp



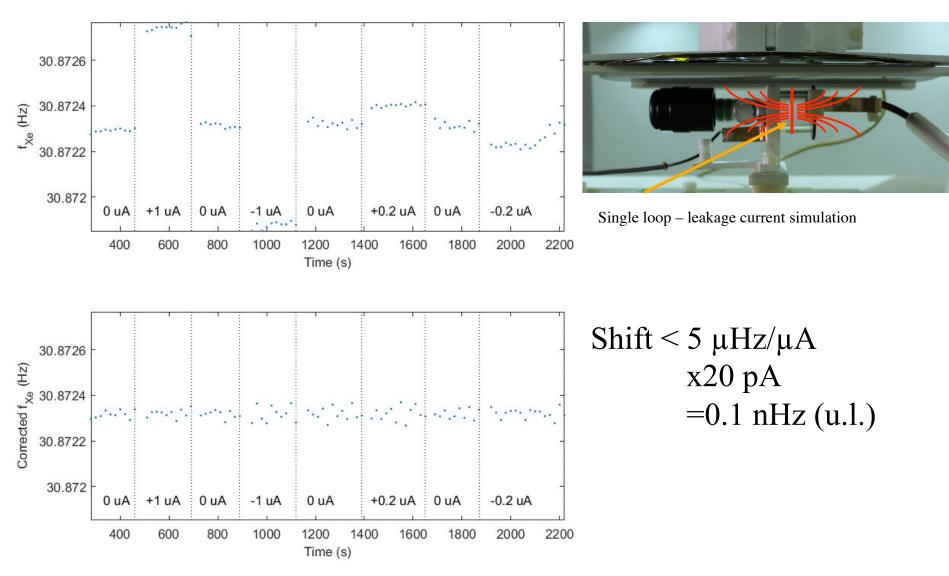
- ~ 2 weeks of "data" for Jonas and Natasha
- Systematic studies
 - Co-magnetometer leakage current cancellation
 - Hysteresiserefreensitude in stield le

nEDM 2017 - HeXe - Tim Chupp

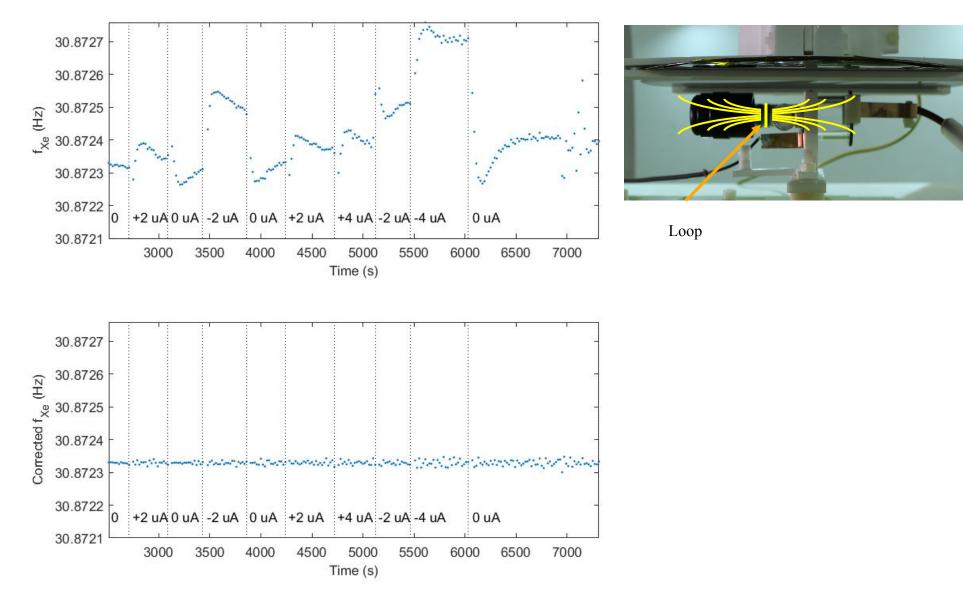

10/17/17

	¹²⁹ Xe [pT]	³ He [pT]	
TUM 2016	13	44	less repeatable; laser drift
PTB 2017	25-40 <u>Signal amplitu</u>	5-7 de in shield	pyrex pumping cell; "dirty" Rb?

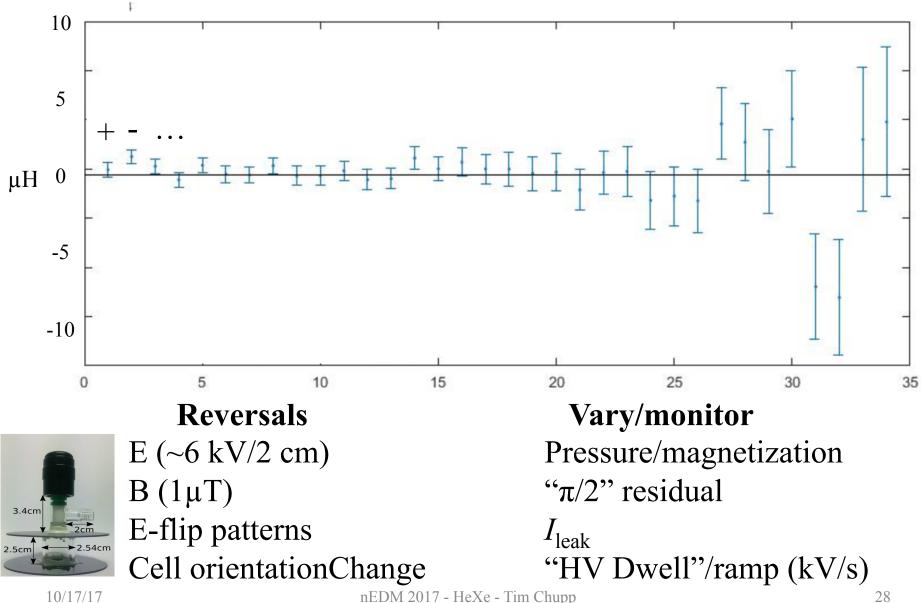
nEDM 2017 - HeXe - Tim Chupp

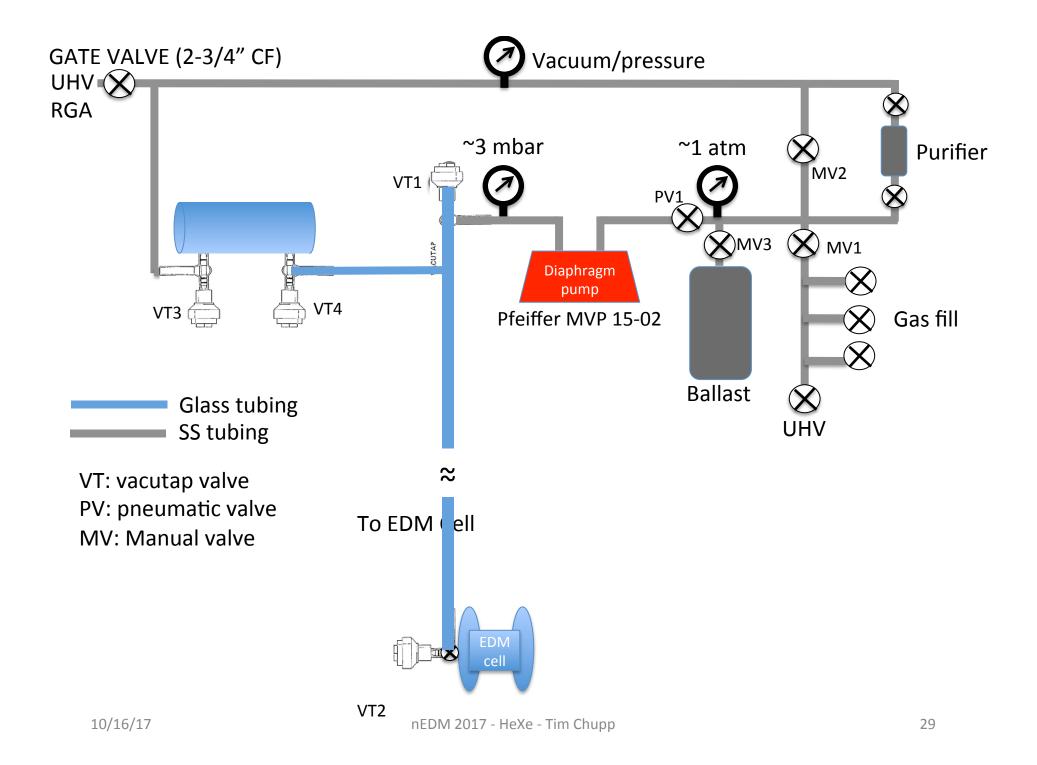

June 2017 PTB "test run"

10/16/17


nEDM 2017 - HeXe - Tim Chupp

Leakage current test


nEDM 2017 - HeXe - Tim Chupp


Dipole/hysteresis test

27

Blinded data run - 6 kV/400 s

Summary

Global analysis sets limits on C_S , C_T , g_{π}^{0} , g_{π}^{1} ...

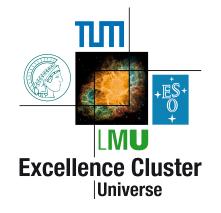
Improving any "existing" system has discovery potential

 $^{129}\mathrm{Xe}$ EDM NOT ruled out by $^{199}\mathrm{Hg/nEDM}$ (amazing experiments) d_e

TUM/PTB 2016/2017:

- Systematic studies
- Blinded EDM data
- T_2^* of up to 9000 s in EDM cell
- ³He signal limited
- Leakage currents < 20pA
- Blind EDM "analysis"/full systematics

<u>PTB ~March 2018</u>

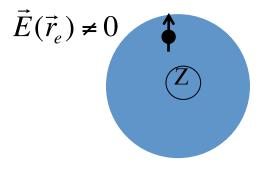

- BMSR-II upgrade extra layer
- Improve ³He polarization GE180 pumping cell Circulating-closed system
- Improved SQUID dewar (10x)
- Improve spin-flip pulse accuracy

SNR (1Hz BW) 10 ⁴ 150 1500 1800 1000 (5000)	2500
	2300
E [kV/cm] 10 4 4 2.4	4
T ₂ * [s] 200 90 2000 2500 6000-9000	> 8000

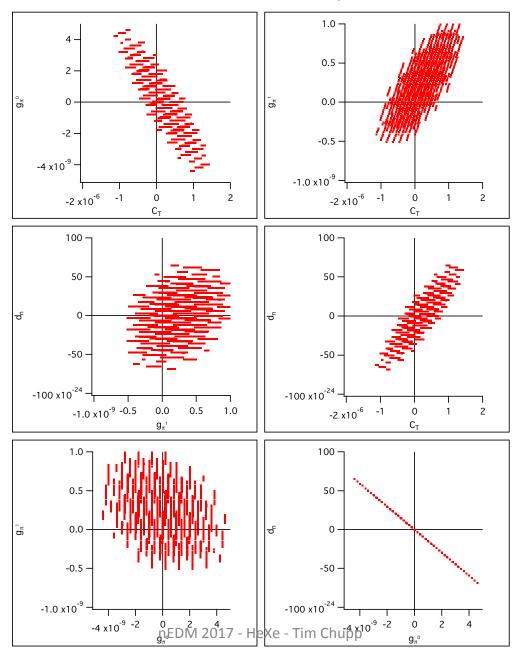
Thank You/Merci!

TUM Peter Fierlinger Florian Kuchler Stefan Stuber Mike Marino Jonas Meinel Julich FZ Earl Babcock PTB Wolfgang Kilian Issac Fan Allard Schnabel Sylvian Knappe Martin Burghoff Lutz Trahms

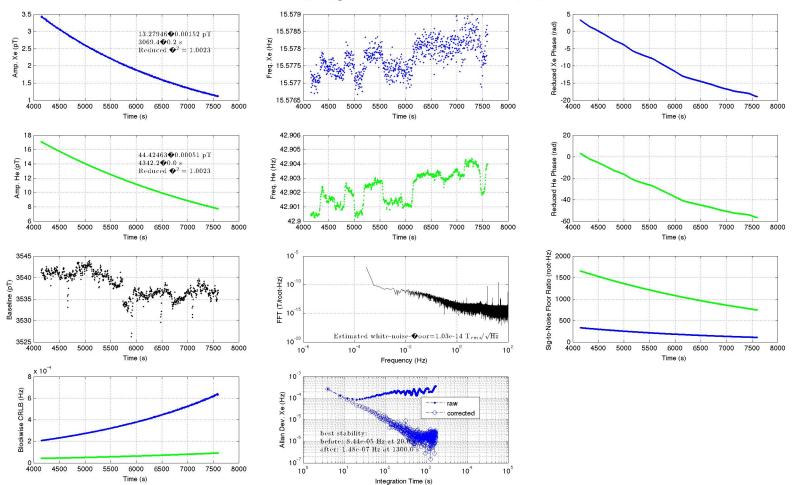
MSU Jaideep Singh UM Natasha Sachdeva Skyler Degenkolb (ILL) Fei Gong T.C.


FORSCHUNGSZENTRUM

10/17/17


Thank you!

Paramagetic atoms/molecules isolate d_e , C_S

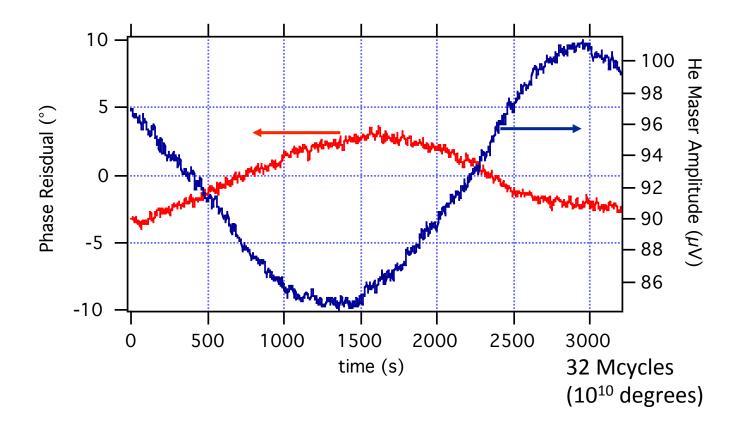

System	$lpha_{d_e}$	$lpha_{C_S}$	$\alpha_{C_S}/\alpha_{d_e}~({\rm ecm})$
Cs	123	$7.1 \times 10^{-19} \text{ e cm}$	
	(100 - 138)	(7.0 - 7.2)	$(0.6 - 0.7) \times 10^{-20}$
Tl	-573	$-7 \times 10^{-18} \text{ e cm}$	1.2×10^{-20}
	-(562 - 716)	-(5-9)	$(1.1 - 1.2) \times 10^{-20}$
YbF	$-1.1 \times 10^{25} \text{ Hz/e cm}$	$-9.2 \times 10^4 \text{ Hz}$	8.6×10^{-21}
	-(0.9-1.2)	-(92-132)	$(8.0 - 9.0) \times 10^{-21}$
ThO	$-5.0 \times 10^{25} \text{ Hz/e cm}$	$-6.6 \times 10^5 \text{ Hz}$	1.3×10^{-20}
	-(4.0-5.0)	-(4.6-6.6)	$(1.2 - 1.3) \times 10^{-20}$

Global Analysis

10/16/17

TUM-2016-06-06-8-gradiometer-Z1minusZ2-blocksize4s-4146to7602s

nEDM 2017 - HeXe - Tim Chupp


HeXeEDM 2015 vs 2016

Name	2016-06-06 08-08-25.058220-0_downsample.dig	2015-06-03 23:06:09.229682.dig
Initial Amplitudes	He: 44 pT, Xe: 13 pT	He: 3.5 pT, Xe: 0.7 pT
T2*	He: 4342 s, Xe: 3069 s	He: 3170.7 s, Xe: 2768.1 s
Noise floor	10 fT/root-Hz	13.4 fT/root-Hz
df @ 1000 s	Xe: > 200 uHz	Xe: > 100 uHz
df @ 1000 s (comagnetometer)	Xe: < 1 uHz	Xe: < 10 uHz
Clock check	< 0.04 nHz at 1000 s	Not done

Goal/expectation: 10^{-29/30} e-cm

nEDM 2017 - HeXe - Tim Chupp

Free Running (³He) Maser Frequency Depends on Magnetization (M_z) (magnetic cross talk)

