R&D on field stability and uniformity for the TRIUMF nEDM experiment

C. Bidinosti & R. Mammei

Outline

- Self-shielded B₀ coils two approaches
- Compensation coils
- NMOR degaussing, field stability

Shield-coupled vs. self-shielded coils

e.g. B_0 flux return through shield, reaction factor, $\mu(T)$

Generate contained fields

e.g. B₀ that does not interact with passive shields Create 'cloaked' volumes

e.g. zero-field regions in $B_{\rm O}$ for magnetometers

Extension of solenoid inside a superconducting cylinder ($\sigma = \infty$)

- TJ Sumner, J Phys D: Appl Phys 20, 692 (1987)
- KW Rigby, Rev Sci Instum **59**, 156 (1988)

Boundary condition $B_{\perp} = 0$

$$K_{cyl}(z) = - B_z(b,z)/\mu_o$$

$$K_{cap}(\rho) = - B_{\rho}(\rho,L)/\mu_{o}$$

Given surface current on inner cylinder, know surface current on outer cylinder

Surface current K

 $\Delta B = \mu_o K$

Given surface current on inner cylinder, know surface current on outer cylinder

 $\mathbf{K}_{\Phi} = \partial \psi / \partial z$ $\psi \equiv \Delta \Phi$

Segment into regions of equal integrated surface current

Stream function ψ Scalar potential φ Evenly spaced contours of ψ bound equal current

- JA Stratton, *Electromagnetic Theory* (McGraw-Hill, 1941), §4.2
- HA Haus & JR Melcher, *EM Fields and Energy*, (Prentice-Hall, 1989), §8.5
- CP Bidinosti et al., J Magn Reson **177**, 31 (2005)

Given surface current on inner cylinder, know surface current on outer cylinder

Replace inner and outer surface currents with discrete wires

Design prototype coil for small $\mu\text{-metal}$ shield set

NMOR apparatus at UW

4-layer shield

• J Martin et al, NIMA 778, 61 (2015)

Choose basic design – split solenoid

Split inner solenoid with different lengths and surface current densities.

Optimize lengths and current ratios of segments to minimize ΔBz

Example: Split solenoid B₀ coil for ¹²⁹Xe EDM experiment at Tokyo Institute of Technology

- CP Bidinosti, Y Sakamoto and K Asahi, IEEE Magnetics Letters **5**, 0800304 (2014)
- Y Sakamoto et al, Hyperfine Interact **230**, 141 (2015)

Optimization of inner surface currents

Split inner solenoid with different lengths and surface current densities.

Optimize lengths and current ratios of segments (1) and (2) to minimize ΔBz

extend 'useable' range

Construction of coil

Design - cut-away with field lines

Laser cut formers and grooves.

Wound by hand under microscope.

End caps Outer cylinder Inner cylinder

Field mapping

Field mapper, current supply, and relays under computer control

Honeywell HMC5883L 3-axis AMR 'compass'

Field map along central axis

Field map outside coil – Bz leakage field

Field map outside coil – Bp leakage field

Field map outside cap – Bz leakage field 0 cm 1 cm 9 cm Leakage on The Endcap 0.40 0.35 0.30 Normalized field(X-axis) 0.10 0.05 0.00 Innercoil Only(1cm) ▼▼▼ Self-Shielded Coil(1cm) 0 2 6 8 4

Position (cm)

Position (cm)

Field map along central axis inside passive shields

Next step – stability measurement via NMOR

Shield-coupled vs. self-shielded

Temporal dependence of reaction factor

NMOR apparatus at UW

• T Andalib et al, NIMA 867, 139 (2017)

Design principle – self-shielded transverse coil

Analytic solution for sine-phi coil

- RA Beth, BNL-10143, US Pat 3466499 (1966)
- C Bidinosti et al, JMR 177, 31 (2005)

Design principle – self-shielded box coil

 $\Phi=0$ externally

• C Crawford, U Kentucky

Self-shielded box coil with removable end caps

Figure 14: Full inner coil

Figure 15: Outer removeable endcap

R Burrough, UWinnipeg, 2017 ٠

Want $\delta B \sim nT/m$

Explore:

- dimensions
- number of turns
- wire displacements
 - R Burrough, UWinnipeg, 2017

Challenges:

- Solve Laplacian in COMSOL
- Export and sort contour data in Python
- Biot-Savart calculation and analysis
- Presently time consuming
 - R Burrough, UWinnipeg, 2017

Return to analytic cylindrical model to get a better handle on parameter space (?)

$$\mathbf{K}_{\pm l} = \frac{\mp K}{2} \begin{cases} (1 - a^2/b^2) \left(\sin \phi \,\hat{\boldsymbol{\rho}} + \cos \phi \,\hat{\boldsymbol{\phi}} \right), & \rho < a \\ -a^2(\rho^{-2} + b^{-2}) \sin \phi \,\hat{\boldsymbol{\rho}} \\ +a^2(\rho^{-2} - b^{-2}) \cos \phi \,\hat{\boldsymbol{\phi}}, & a < \rho < b \\ 0, & \rho > b \,. \end{cases}$$

e.g. use Mathematica for everything

Compensation coils for Phase I

(a) The n = 1 optimized coil (b) The n = 2 optimized coil (c) The n = 3 optimized coil

(d) The n = 4 optimized coil (e) The n = 5 optimized coil (f) The n = 6 optimized coil

Optimization of square sine-phi coils

$$\left(\left| \frac{B_x - B_c}{B_c} \right| < 1\% \right) \bigcap \left(\left| \frac{|\vec{B}| - B_c}{B_c} \right| < 1\% \right)$$

Largest cylindrical volume fitting in region of δB < 1%

• C Loftson, UWinnipeg, 2013

Compensation coils for Phase I

Square sine-phi coils: Bx, By

Merritt-4 coil: Bz

• C Loftson, UWinnipeg, 2013

NMOR Studies at UWinnipeg

• J Martin et al, NIMA 778, 61 (2015)

Degaussing

Degaussing

Sample rate 20,000/s

Field Stability

Single FID at ~ 0.2uT

Summary

- Designing, building, testing self-shielded B_0 coils
- Have ready design for compensation coils
- NMOR for magnetometry and R&D tool

<u>Thanks</u>

Profs: R. Mammei, J. Martin

<u>Students:</u> J. Pu, R. Burrough, M. Anderson, T. Andalib, M. Das, M. Lang, C Loftson

<u>Technicians</u>: D. Ostapchuk

