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Accelerating expansion of the Universe

Evidence
e Cosmologically distant Type la supernovae (SNla) [1, 2]
e Baryon acoustic oscillations (BAO) [3]
e Cosmic Microwave Background (CMB) data [4]
Explanation

e Lambda-Cold-Dark-Matter model (ACDM) [5]

e Limitations: Physical origin cold dark matter (CDM) and the
cosmological constant (A) [6]

e Alternative explanations? Several!

o Braneworld models
o Quintessence models
o ...
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Explaining accelerating expansion of the Universe
Braneworld model of gravity proposed by Dvali, Gabadadze and Porrati (DGP) [7]

1
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Gravity leaks

Crossover length scale ry
b e r < rg: 4D gravity

e r > ry: 5D modified gravity
e Brane self-inflationary solution
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Testing modified theories of gravity

Supernova (SN) observations

Most sensitive probe of the late-time expansion history of the universe up
to redshift z ~ 1

Gravitational Wave (GW) observations

e "Standard sirens”
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Testing modified theories of gravity

Supernova (SN) observations

Most sensitive probe of the late-time expansion history of the universe up
to redshift z ~ 1

Gravitational Wave (GW) observations

e "Standard sirens”

e Disadvantage: Redshift needs to be measured independently

e New opportunities to test modified theories of gravity

e Do large-wavelength gravitational waves and short-frequency photons

experience the same number of spacetime dimensions? [8]

(WNPPC 2020) February 14, 2020  4/17



Limits on the number of spacetime dimensions
GW damping in higher dimensional theories: Theory

e In General relativity (GR) the strain goes as
her o W (2)
dr

where dLGW is the luminosity distance of GW source, here also the
"true" EM distance dfM.
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Limits on the number of spacetime dimensions
GW damping in higher dimensional theories: Theory

e In General relativity (GR) the strain goes as

1
hGR XX TLGW

(2)

where dLGW is the luminosity distance of GW source, here also the

"true” EM distance dfM.

o In higher dimensional-theories with screening scale R., GW strain

scales as [9]

1

JEu /2 2(y=1)/n
1+ (%)
where v is related to the number of dimensions D by

D—-2
’7:7

2
and n gives transition steepness.
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Limits on the number of spacetime dimensions
Laser Interferometer Space Antenna (LISA): Redshift distribution of MBHBs [11]

Simulated data points with their
error bars for one random catalogue
in the model “poplll”.
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Results Bayesian parameter estimation
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R.=Hgn=1

R.= Hgn =10
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Conclusions

e GWs are a powerful probe of the universe
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Conclusions

e GWs are a powerful probe of the universe

e LISA has the potential to probe the expansion of the universe in the
redshift range 1 < z < 8

e LISA’s ability to place limits on the number of spacetime dimensions
will depend on:

o Redshift distribution of MBHBs and the corresponding efficiency of
host galaxy identifications

e Our analysis is a phenomenological one
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