Search for mono-Z signature dark matter with the ATLAS detector at the LHC

WNPPC, February 13-16, 2020 Samantha Taylor Supervisor: Michel Lefebvre University of Victoria

University of Victoria

Dark matter

- Astronomical observations reveal the existence of dark matter
- The nature of dark matter is not explained by our current knowledge of physics

Motivation Detection methods

- Astronomical observations
	- Ex: galaxy rotation curves, velocity dispersion, gravitational lensing

Direct detection

- ie: DM nuclei scattering
- Indirect detection
	- ie: products of DM decay/annihilation
- Production of dark matter
	- ie: DM as product from particle collisions

Dark matter production

LHC

- *pp* beam collisions
- Most recent results from Run II (2015-2018) at 13 TeV
- Collection of 140 fb-1 of data so far
- Run III to operate 2021-2024 at 13-14 TeV

ATLAS

- Cylindrical detector with nearly 4π coverage
- Dark matter particle not yet detected
- Use data collected to make exclusion plots for parameters of interest
- *Missing transverse momentum* is usually the main discriminant

Missing transverse momentum

- In principle, transverse momentum in particle collider final states should add to zero via conservation of momentum
- Certain processes give weakly-interacting/undetected particles in final state, giving the *illusion* of the violation of momentum conservation (missing transverse momentum, MET, or E_T^{miss})
	- Ex: invisible *Z* decay to two neutrinos, poor signal reconstruction
- Can search for the existence of DM by studying $E_T^{\rm miss}$
	- Important observable!
- More info on E_T^{miss} : **[Eur.Phys.J. C78 \(2018\) no.11, 903](https://arxiv.org/abs/1802.08168)**

Models and signature

- *Mono-X* signature: large $E_T^{\rm miss}$ and one energetic particle
	- Ex: Mono-jet, Mono-Higgs
- Interested in *Mono-Z* signature in this analysis
- Final state is $E_T^{\rm miss}$ and Z boson
- *Z* decays to two same-flavour leptons (e^+e^- or $\mu^+\mu^-$)

WNPPC - February 2020 Samantha Taylor - UVic 6

Event selection and main backgrounds

WNPPC - February 2020 Samantha Taylor - UVic 7

- February 2020 Samantha Taylor - UVic

Simplified model (V/AV) and 36 fb-1 result

- 6 free parameters:
- (g_q, g_l, g_χ) Coupling to quarks, leptons, DM - $g_q = 0.25$, $g_l = 0.00$, $g_v = 1.00$ m_{χ} - Dark matter mass $m_{\rm med}$ - Mediator mass Γ_{med} - Mediator width \bar{q} med

140fb⁻¹ result coming soon with Run II data

2HDMa

- *gg*-induced leading order diagrams
- 5 free parameters:

 $m_A = m_H = m_{H^{\pm}}$ - Mass of A, H, H+/-

- m_a Mass of pseudoscalar a
- $\sin\theta$ Mixing angle between A, a
- $\tan\!\beta$ Ratio of VEVs of Higgs doublets
	- m_{χ} Dark matter mass

36 fb-1 result (2HDMa)

Published results from **JHEP 05 [\(2019\) 142](https://link.springer.com/content/pdf/10.1007%2FJHEP05%282019%29142.pdf)**

Reweighting techniques

MadGraph reweighting Histogram reweighting

- Many model parameter points are needed for limit scans
	- Full ATLAS simulation CPU intensive
- Instead, only need to fully simulate a few model parameter points using MadGraph
- Produce distributions using event reweighting to other target points
- Based on matrix element ratios

- 2D histograms of two kinematic variables, *p^T* (*χχ*) and *p^T* (*ll*), characterizing the event
- Take ratio of target parameter point histogram to fully simulated histogram for a given model parameter point
- Use these ratios to obtain an event weight to emulate distributions to target point

. **■ Full reconstruction** Emulation using RW techniques

The black and red dots are added on the published figure to illustrate the concept of emulation in model parameter space

Closure tests of reweighting techniques

2HDMa dark matter mass scan

Analysis method for parameter limits

- 1. Dark matter signal simulation with MadGraph
- 2. 'Fast' ATLAS detector simulation (Delphes)
- 3. Use SM background MET distribution from full analysis
- 4. Use data MET distribution from full analysis
	- -36 fb⁻¹ and/or 140 fb⁻¹ (currently blinded)
- 5. Extract parameter limits
	- frequentist profiled likelihood method

m_γ = [1, 500] GeV mass scan

Conclusion

- Lots of evidence for the existence of dark matter
- LHC, ATLAS use *pp* collisions to try to produce and detect dark matter
- Interested in Simplified V/AV and 2HDMa models
	- Mono-Z signature
- Know what main backgrounds are, and what selection criteria are needed to reduce them
- If no discovery is made, can use data to create exclusion ranges for model parameters
- Different reweighting techniques to efficiently simulate DM models
	- **Validated**
- Can then do 'fast analysis' to simulate data and create distributions to extend model parameter scans
	- Must be validated
- Can then extract parameter limits to create exclusion contour plots

Questions?

Backup

Selection criteria for event analysis

mχ -mmed **contour plot for vector mediator (***ee+μμ***)**

m^A -m^a **and tan**β*-m^a* **full contour plot for 2HDMa**

[JHEP 05 \(2019\) 142](https://arxiv.org/abs/1903.01400)

Histogram reweighting ratios

[JHEP 05 \(2019\) 142](https://arxiv.org/abs/1903.01400)

Observed data yield for signal and background

[PLB 776 \(2017\) 318](https://arxiv.org/abs/1708.09624)