
nEDM precession cell, HV, vacuum

Insulator, electrodes, coatings, UCN valve HV power supply, HV feed, HV Simulations

R. Picker, **F. Kuchler**, S. Vanbergen D. Rompen, C. Marshall, S. Horn, I. Nikonov

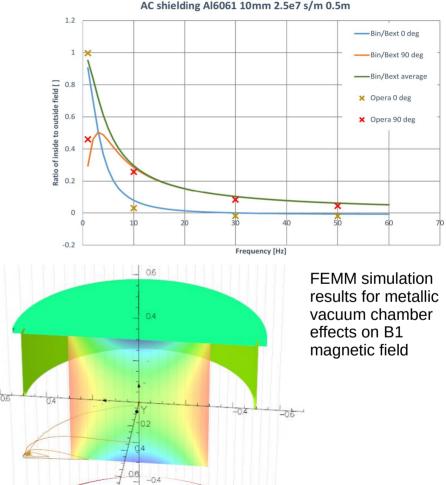
EAC review, Feb 7th 2020

Overview

Vacuum chamber: Baseline design

Cylindrical vacuum chamber

- → Electrodes form part of top lid
- → 1 m diameter, 0.5 m height
- → low-conductivity material 0.1 to 10⁶ S/m
 - → Eddy currents distort the oscillating B1 spin flip field
 - → Still provides ground reference


Candidate materials

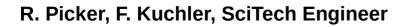
- → Titanium: ~10⁶ S/m
- → ESD plastics (Delrin, PEEK,...): 0.1-10 S/m
- → Glass fiber (G10,...)

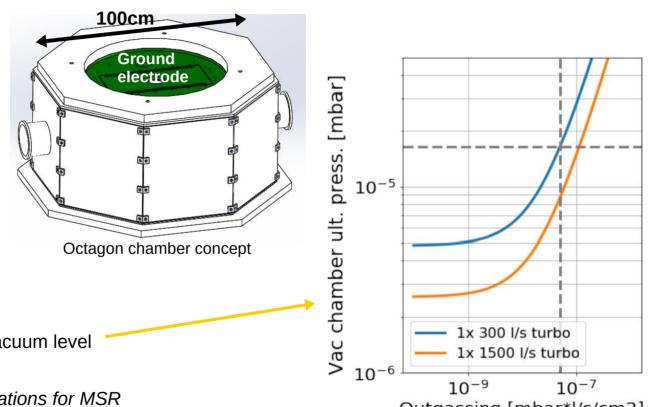
Estimated vacuum level better than 1×10^{-5} mbar:

- → 2x 60mm diameter, 1.5m length pumping lines
 - → small (off-center) penetrations in MSR
- Single 300L turbo pump sufficient

R. Picker, F. Kuchler, SciTech Engineer

Vacuum chamber: Status and plans


Concept design options


- → Evaluate manufacturing options:
 - → large (non-metallic) cylinder
 - octagon chamber (less costly, build at TRIUMF)
- Stress evaluation (top plate and octagon chamber)
- Possibly build small scale prototype chamber (in particular for octagon design)

Candidate materials

- Evaluate cost and feasibility
- Outgassing tests to confirm expected vacuum level

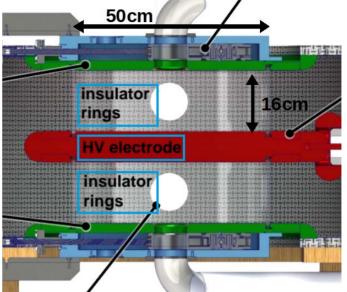
Confirm pumping penetration sizes and locations for MSR

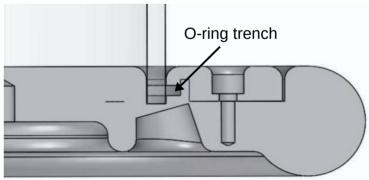
Outgassing [mbar*l/s/cm2]

EDM cell: Baseline design and options

Two vertically stacked cells

Insulator


- → Inner diameter 500mm
- → Height ~180mm, hence cell height 160mm
- → Candidate materials: Rexolite, PEEK, fused quartz
- → Deuterated polymer coating (dPS, dPE)


Electrodes

- → Central electrode: +/- ≥200 kV applied
- → Ground electrodes part of vacuum chamber
- → Electric field inhomogeneity < 3%
- → Candidate bulk materials: AI, Cu, conductive plastics
- → Candidate coatings: DLC, NiP (non-magnetic?)
- → Split design to provide radial seal

Gate-type UCN valve

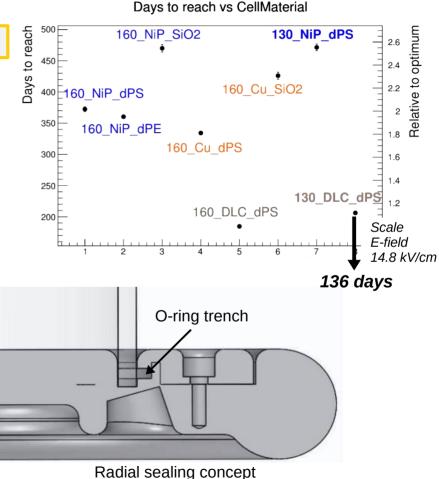
Radial sealing concept

EDM cell: Baseline design and options

Two vertically stacked cells

Investigating smaller cell heights: 100, 130mm

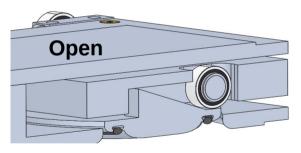
Insulator

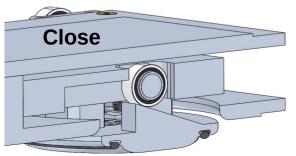

- → Inner diameter 500mm
- Height ~180mm, hence cell height 160mm →
- Candidate materials: Rexolite, PEEK, fused quartz
- Deuterated polymer coating (dPS, dPE) →

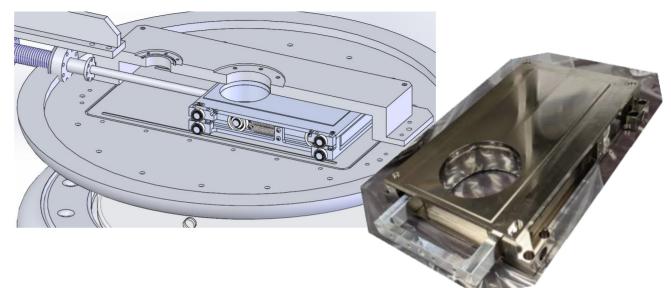
Electrodes

- → Central electrode: +/- ≥200 kV applied
- Ground electrodes part of vacuum chamber
- Electric field inhomogeneity < 3% →
- Candidate bulk materials: Al, Cu, conductive plastics →
- Candidate coatings: DLC, NiP (non-magnetic?) →
- Split design to provide radial seal →

Gate-type UCN valve

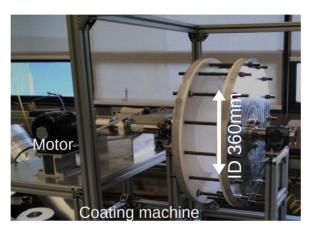


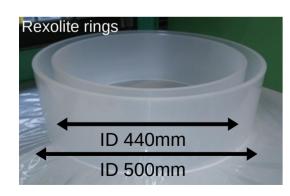



EDM cell: UCN valve

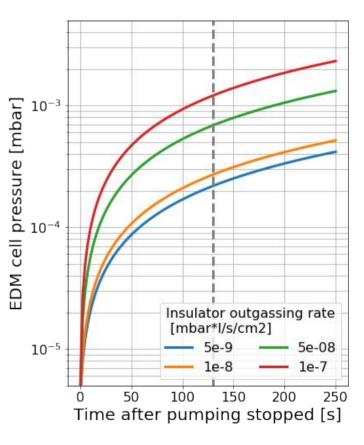
Requirements

- → Low leak rate < 1x10⁻⁵ mbar*l/s
- → UCN storage > 120 s
- → UCN transmission > 95%
- Transition open-close < 2s
- → Cavity depth < 5mm</p>
- → Lifetime > 100000 cycles


Prototype design


- → Sliding gate-type valve linearly actuated (vs linear-rotary design)
- Door 85mm ID (upscaling or reducer to match UCN guide)
- → Non-magnetic
- Detailed design and engineering done at TRIUMF

R. Picker, S. Vanbergen, V. Tiepo, I. Nikonov


EDM cell: Insulator coating

- Coating machine capable of coating substrates up to 600mm diameter and 1000mm length (insulator rings, UCN guides)
- Ready for coating tests with dPS (at RT)
- Upgrade with thermal enclosure (up to 150 C) planned:
 - → dPE coatings
 - vacuum baking to reduce outgassing

F. Kuchler, I. Nikonov, D. Rompen

EDM cell: Status and plans

Electrodes:

- FEMM simulations ongoing to determine details of ground and central electrodes (based on statistics optimization and systematics)
- → UCN simulations for various electrode materials/coatings underway
- → Qualification of candidate materials, eg NiP

Insulator:

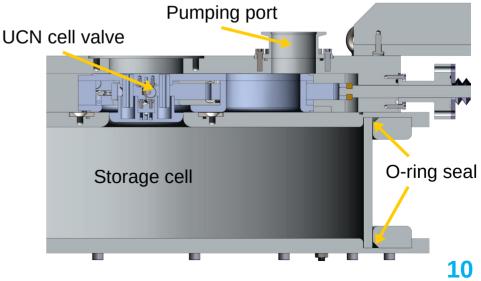
- UCN simulations for various insulator materials/coatings
- Coating facility for (large) insulator rings ready
- → Plan to coat small sized rings (ID 101mm) of glass, PEEK, Rexolite, quartz
 - Tests in high-voltage setup (-100 kV)
 - Monitoring leakage current with prototype PCB

DLC seems beneficial over NiP Fused quartz suitable for phased approach?

EDM cell: Status and plans

Prototype development:

- UCN gate-type valve ready for assembly and testing (after small modifications)
- → Full sized (500mm) EDM storage cell prototype built
 - Radial seal leak testing under way
 - UCN storage test of NiP coated aluminum to compare vs dPS on Rexolite (possible as early as spring 2020)


Considerations:

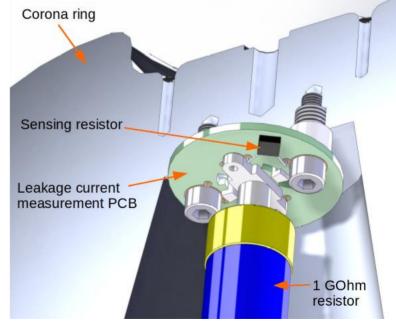
- → Simulations on v x E systematics
- Evaluate option of horizontally stacked cells (at this stage only requires foreseeing additional MSR holes)

R. Picker, F. Kuchler, S. Vanbergen, SciTech Engineer

EDM storage cell prototype

High voltage system: Baseline concept

Voltage goal is 200 kV over 160mm \rightarrow electric field >12 kV/cm

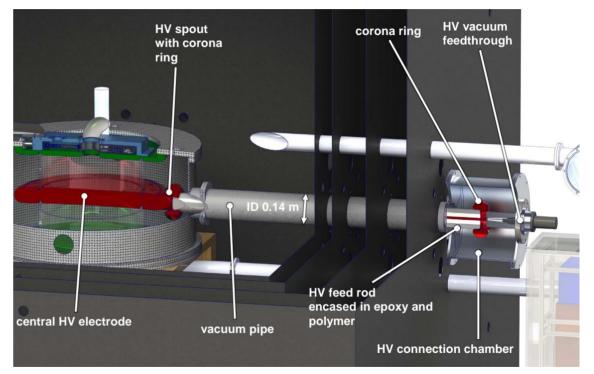

HV supply

- Available up to 300kV for high reproducibility and stability
 e.g. Heinzinger PNChp series, FUG, Spellman, Glassman
- → Polarity switching using:
 - → HV relays and two supplies (eg Heinzinger)
 - Motor-driven dial (eg FUG)

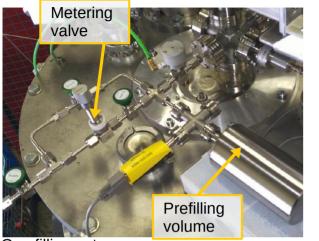
Leakage current monitor

- → For ground and HV side
- → 100 pA sensitivity, kHz bandwidth
- Optically switchable gain
- Power over fibers

Leakage current monitor concept design

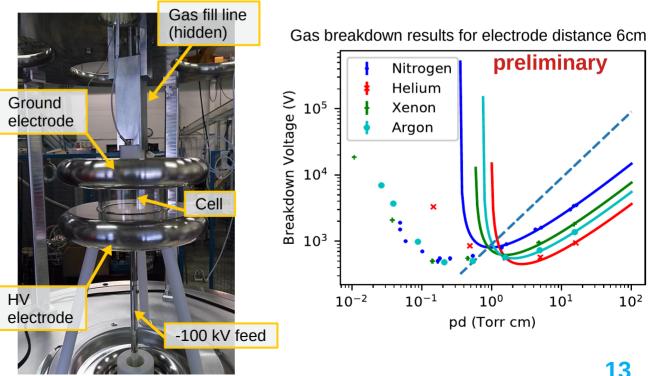

High voltage vacuum feed conceptual design

Commercial non-magnetic HV feed-through


- Availability and cost?
- Non-magnetic cable and connector?
- In contact with manufacturers (Dielectric Sciences, MPF)

Standard (magnetic) feed-through

- → Connection chamber outside MSR
- → 14cm ID feed: epoxy, PE and vacuum layers
- → 4cm ID feed: PE insulator, gap-less design


High voltage: Test setup and breakdown measurements

Gas filling setup

- Uncertainties in pressure measurement →
 - better pressure gauges installed
 - pressure measurement calibration
- Monitor gas composition in cell →
- Lower pressure range $<1x10^{-2}$ mbar → currently limited by outgassing
 - pressure rise during HV ramp

- Determine xenon breakdown strength vs pressure for use as additional comagnetometer species
- Insulator material/coating high-voltage tests (test cell size OD 114mm, almost full size prototype possible)

F. Kuchler

High voltage system: Status and plans

- → HV feed
 - → Finalize conceptual design \rightarrow defines size of central MSR penetration
 - Evaluate commercially available options for non-magnetic HV feed and HV cable/conncetor
 - → Prototype HV feed can be tested in HV test setup (-100 kV)
- → Manufacture prototype leakage current monitor
 - → Test and develop DAQ on ground side of HV test setup
 - → HV side testing with new corona ring
- → Procurement of HV power supply of at least 200 kV

Summary

Concept designs

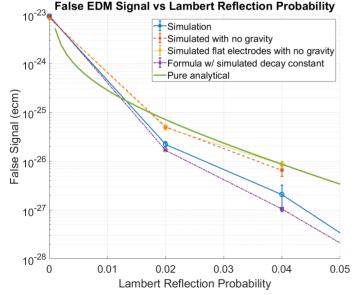
→ Vacuum chamber, EDM cell, HV feed options, leakage current monitor

Accomplishments

- → UCN cell valve prototype designed and manufactured
- Polymer coating machine built
- → Prototype "cell" ready for testing UCN storage lifetime
- → First HV breakdown measurements with various gases in small test cell

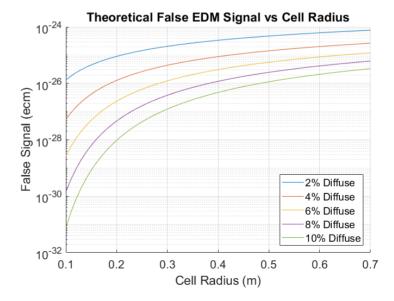
Feedback requests

- → Commercial non-magnetic HV feed and cable
- Experience with candidate materials for insulator, vacuum chamber, coatings

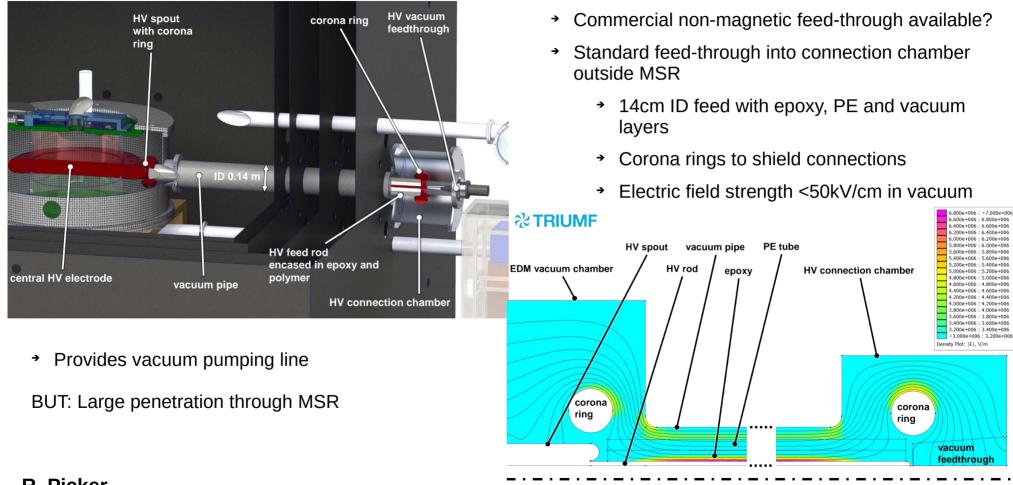

Thank you!

Backup slides

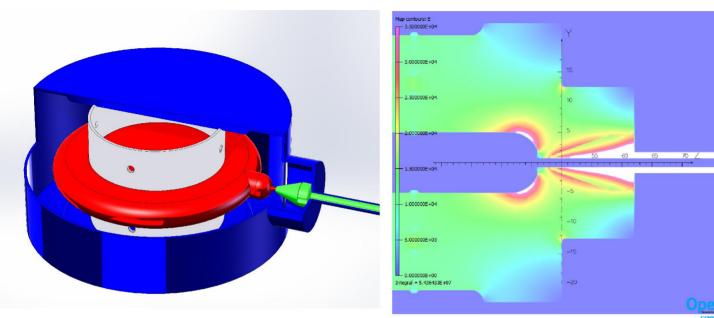
EDM cell height and material simulation results


Cell	E Field (kV/cm)	Days	$\mathrm{t_{Ramsey}}$ (s)	$\mathbf{N_{coll}}$
cell160_NiP_dPS	10	541 ± 6	141	2501369
cell160_DLC_dPS	10	265 ± 3	171	3985394
cell160_NiP_dPS	12	372 ± 4	140	2508011
cell160_DLC_dPS	12	184 ± 2	167	4192824
cell130_NiP_dPS	14.8	310 ± 4	130	2040657
cell130_DLC_dPS	14.8	$\textbf{136} \pm \textbf{2}$	167	3674857
cell160_NiP_dPS	20	$\textbf{134} \pm \textbf{2}$	140	2471084
cell160_DLC_dPS	20	66 ± 1	166	4182288

- Significant systematic contribution caused by inhomogeneity of electric field in combination with possible uniform motion of the neutrons
- Contributed 0.78x10⁻²⁷ ecm uncertainty previously, goal of < 0.40x10⁻²⁷ in new measurement
- PENTrack simulations to study magnitude of these effects and mitigation
- Largest contribution from rotational motion of


EDM cell: v x E systematics

- Rotational effect depends on:
 - Radial inhomogeneity of electric field
 - Decay time of rotational motion due to randomizing Lambert diffuse reflections
 - Timing of measurement sequence (a short wait before starting precession significantly reduces effect)
- Need low inhomogeneity, rough cell surface to increase decay rate
- Larger cell predicted to increase decay time and make systematics worse, so favours not making cell too large



High voltage vacuum feed conceptual design

symmetry axis

High voltage gap-less feed conceptual design

40mm OD ground sleeve

PE insulator with cone covering high electric field regions

15mm rod at 200 kV

Reduces the MSR penetration to <50mm

HV rod/tube with plastics insulator (e.g. HDPE) filling a ground sleeve tube

Requires gap-less manufacturing of a 1-1.5m long feed

Shrink fitting has bee successfully used: C. Cantini, JINST **12** P03021 (20170

Electric field strength <50kV/cm in vacuum

F. Kuchler