



# **Comagnetometer Status**

Eric Miller

**Current Members:** 

**UBC:** T. Momose, E. Miller

(W. Klassen, starting PhD Sept)

**U.Winnipeg: M. Lang** 



# **Goals/Requirements**

Goal: Calculate the **volume-and time-averaged** magnetic field  $B_0$  from <sup>199</sup>Hg precession frequency to correct the neutron precession frequency for B-field drifts.

- RS 3.-28 The Hg comagnetometer shall be capable of measuring a 1  $\mu$ T magnetic field to a precision of 10 fT over 100s
- RS 3.-30 The comagnetometer systems shall not introduce total systematic uncertainty of more than <u>0.1x10<sup>-27</sup> e·cm</u> into the nEDM measurement due to systematic uncertainty in the comagnetometer frequency.
- RS 3.-33 Development of the comagnetometer shall be completed in the timeframe given by the Level 1 schedule shown in Document-154393. Critically this specifies <u>installation of all hardware by 2021 2023 at TRIUMF.</u>

**Technique** 



Phase I: following established technique

- 199Hg comagnetometer + crossing-point analysis
- 2x Hg polarizing cells, 2x nEDM cells
- Baseline: lamp pump & laser probe; also testing the feasibility of laser-based pumping

**Phase II:** <sup>199</sup>Hg + <sup>129</sup>Xe dual comagnetometry

- Direct determination of  $\frac{\partial B_z}{\partial z}$
- Subject to R&D readiness & budget

# **Potential layout**

Starting to specify interfaces: MSR holes, vacuum connections, etc



**Hg Laser Development** 



- R&D laser: Generate UV light to pump/probe 199Hg
  - External cavity diode laser (ECDL, 60mW, 507nm) and second-harmonic generation (SHG)
  - Stability: <200MHz (free-running)</li>
  - Lock time > 15 min
  - >280 μW UV produced:

(5-20µW required per cell for Hg optical pumping)

- Pursue initial tests (pumping/precession) with this laser
- Budget includes a commercial system (frequencyquadrupled Toptica TA-FHG) for turn-key operation







#### Commercial FHG









- Detection setup for transmission spectroscopy
- PMT transmission signal normalized to PD using optical chopper & lock-in detection
- Natural abundance, *n*=5x10<sup>11</sup>cm<sup>-3</sup>
  - comparable with  $\sim n_{199Hg,prepol.}$  in polarizing cell cf.  $n_{199Hg,precess.}$   $\sim 3 \times 10^{10} \text{cm}^{-3}$  in nEDM cell
- Doppler-broadened peaks FWHM ~1 GHz means different isotopes overlap

# **Hg: Optical Pumping**

- Polarization  $P_{Hg} \sim 40\%$  predicted from simulation (eqn. from ETH thesis, M. Fertl)
  - Pump source: laser, >5uW
  - 1.2 L polarization test cell (26cm L x 7cm ID)
  - We will test the performance (relaxation) of Surfasil coating polarization cell
- Initial tests will be with Hg pump & probe in same cell.
- Design work started on Hg shutter (S. Lan)
- Hg source: we are currently using a metal bead; plan to switch to HgO to control vapour pressure.





$$\frac{dP(t)}{dt} = \frac{2}{3} \Phi \frac{1}{N} \left( \frac{1 - P(t)}{1 + \beta + P(t)} \right) \left( 1 - e^{-N\sigma(1 + \beta - P(t))l_{pol}/V} \right) - \frac{P(t)}{N(t)} \frac{dN}{dt} - \Gamma_R P(t)$$



# **Sensitivity and Systematic Uncertainty**

• 10 fT requirement depends on Hg signal to noise density ratio  $\frac{a_S}{\rho}$  (SNDR) and depolarization lifetime  $\tau$ : (Ban et al., NIMA 896 (2018) 129–138)

| δB target | T <sub>Ramsey</sub> | $	au_{\sf depol,Hg}$ | SNDR $\frac{a_s}{\rho}$ |
|-----------|---------------------|----------------------|-------------------------|
| 10 fT     | 132 s               | 100 s                | > 9300 V/V√Hz           |
| 10 fT     | 200 s               | 120 s                | > 6400 V/V√Hz           |

- We're starting to consider systematics in light of target 0.1x10<sup>-27</sup> e·cm
  - (such that all systems total < 10<sup>-27</sup> e·cm)
- ν<sub>Hg</sub> light shift can be mitigated by <u>laser stabilization</u>
  - We will lock laser to a Fizeau-type wavemeter (HighFinesse WS8) with <<10MHz stability</li>
- Will perform <u>crossing-point analysis</u> to limit GPE/motional false EDM effects
  - Cs magnetometers provide useful measurement of  $\frac{\partial B_z}{\partial z}$

$$\delta B \ge \frac{\sqrt{12}}{\gamma_{\mathrm{Hg}} \frac{a_s}{\rho} T^{3/2}} \sqrt{C(r = T/\tau)}$$



# **Hg Schedule**



### Milestones and estimated dates:

- ✓ Hg transmission spectra: achieved Dec 2019
- Lock laser (<10MHz) to wavemeter: Feb 2020</p>
- Optical pumping tests with laser: Apr 2020
- HgO oven preliminary design with natural abundance HgO: Aug 2020

#### Also:

- Source & test <sup>204</sup>Hg lamp for baseline design.
- Free-spin precession (FSP) tests in high field (e.g. 1mT)
- Free-spin precession in 1µT field with model shield

### **Xenon Status**

### Phase II:

- There is a strong case for dual species comagnetometry using <sup>199</sup>Hg and <sup>129</sup>Xe
- Possible to measure magnetic field gradient  $\frac{\partial B_z}{\partial z}$  directly without crossing technique

$$B_{0z} = \frac{\gamma_{Xe}^2 \omega_{Hg} - \gamma_{Hg}^2 \omega_{Xe}}{\gamma_{Xe} \gamma_{Hg} \left( \gamma_{Xe} - \gamma_{Hg} \right) \left( \frac{1}{2c^4} \gamma_{Xe} \gamma_{Hg} R^2 E^2 + 1 \right)}$$

$$\frac{\partial B_{0z}}{\partial z} = \frac{2c^2 \left[ \gamma_{Xe} \left( \gamma_{Xe}^2 R^2 E^2 - 2c^4 \right) \omega_{Hg} - \gamma_{Hg} \left( \gamma_{Hg}^2 R^2 E^2 - 2c^4 \right) \omega_{Xe} \right]}{\gamma_{Hg} \gamma_{Xe} R^2 \left[ \gamma_{Xe} \left( \gamma_{Hg}^2 R^2 E^2 - 2c^4 \right) - \gamma_{Hg} \left( \gamma_{Xe}^2 R^2 E^2 - 2c^4 \right) \right]}$$

- Important progress has been made in optical pumping, freezeout & detection
- Schedule: 2023 and beyond...

### **Xenon: Detection**



- Detect Xe via two-photon excitation & spontaneous fluorescence detection
- OPSL-based frequency-quadrupled laser system
  - Optically pumped semiconductor laser
  - Up to 400mW UV, 174kHz linewidth
- Doppler-free 5p<sup>5</sup>6p ← 5p<sup>6</sup> LIF spectra obtained in a retroreflective setup
  - Signal obtained from as low as 15mTorr Xe
  - Goal for comag use: ~1-10mTorr, depending on HV breakdown





E. Altiere, E. Miller, T. Hayamizu, D. Jones, K. Madison, T. Momose, Phys. Rev. A. 97, 012507 (2018)

Current @ UBC: T. Momose, E. Miller

### **Xenon: Polarization**

- Polarization by spin exchange optical pumping (SEOP)
- $P_{Xe} \approx 25\%$  achieved with U.Winnipeg prototype; commercial systems >90% available
- Automated freezeout and recovery of polarized <sup>129</sup>Xe from SEOP gas
  - 100-700s accumulation time
  - Efficiency up to 80%

Current @ U. Winnipeg: M. Lang





M. Lang, thesis (in progress)









## **Summary:**

- Our current efforts are focused on developing the Hg comagnetometer for initial nEDM tests at TRIUMF
- Ready to start optical pumping <sup>199</sup>Hg in a 1.2L cell using the ECDL+SHG laser system; also working on laser stability & signal analysis.
- Learning and applying the lessons from previous-gen experiments.







# Thank you!



# **Systematic Uncertainty**

- We're starting to consider systematics in light of target 0.1x10<sup>-27</sup> e·cm
  - (such that all systems total < 10<sup>-27</sup> e⋅cm)
- ν<sub>Hg</sub> light shift can be mitigated by <u>laser</u> stabilization
  - We will lock laser to a Fizeau-type wavemeter (HighFinesse WS8) with <<10MHz stability</li>
- Will perform <u>crossing-point analysis</u> to limit GPE/motional false EDM effects
  - Cs magnetometers provide useful measurement of  $\frac{\partial B_z}{\partial z}$

TABLE II. Summary of systematic errors and their uncertainties, in units of  $10^{-26}$  e cm. Correction for the mercury light shift is already incorporated run by run prior to the crossing-lines fit; other corrections are then applied to the crossing-point EDM value  $d_{\times}$ .

| Effect                                                 | Shift  | $\sigma$ |
|--------------------------------------------------------|--------|----------|
| $\nu_{\rm Hg}$ light shift (included in $d_{\times}$ ) | (0.35) | 0.08     |
| $\chi_{\nu}^2 = 1.2$ adjustment                        | 0      | 0.68     |
| Quadrupole fields and Earth's rotation                 | 0.33   | 0.14     |
| Dipole field                                           | -0.71  | 0.07     |
| Hg door PMD                                            | 0.00   | 0.60     |
| $\mathbf{v} \times \mathbf{E}$ translational           | 0.000  | 0.001    |
| $\mathbf{v} \times \mathbf{E}$ rotational              | 0.00   | 0.05     |
| Second-order $\mathbf{v} \times \mathbf{E}$            | 0.000  | 0.000    |
| Uncompensated B drift                                  | 0.00   | 0.34     |
| Hg atom EDM                                            | -0.002 | 0.006    |
| Electric forces                                        | 0.00   | 0.04     |
| Leakage currents                                       | 0.00   | 0.01     |
| AC fields                                              | 0.000  | 0.001    |
| Nonuniform Hg depolarization                           | 0.000  | 0.001    |
| Total shift of $d_{\times}$                            | -0.38  | 0.99     |

Pendlebury et. al. Phys. Rev. D 92, 092003 (2015)

# **Hg: Frequency Stability**

- UV stability <200 MHz free-running</p>
- We will lock to a Fizeau-type wavemeter (HighFinesse WS8)

absolute accuracy ±10 MHz

stability << 10MHz</p>

Light shift

- < 10ppb (10fT) shift in precession from 10MHz uncertainty in laser stability
- Detune laser to "no light shift frequency" to minimize direct and indirect (GPE) light shift effects

