#### Helium Cryostat and cryogenic tests

Shinsuke Kawasaki, KEK for the TUCAN Collaboration

# Outline

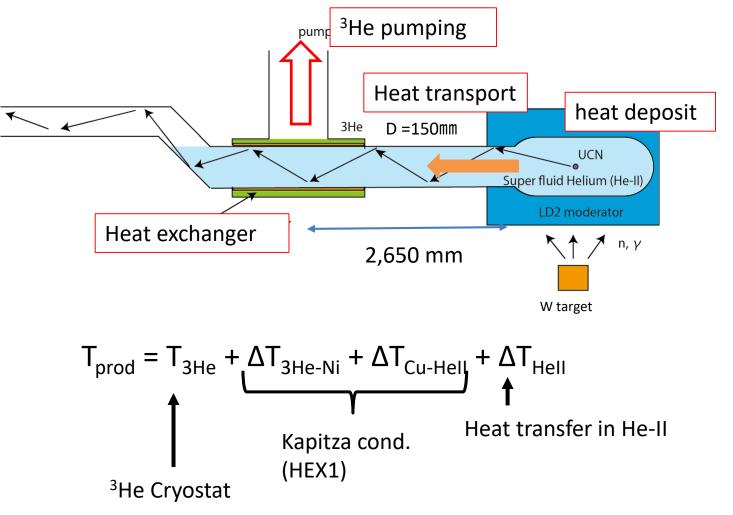
- Working group
- Overview
- Helium-3 cryostat
  - Heat exchanger
    - Design
    - Test
  - Fabrication status
- <sup>3</sup>He <sup>4</sup>He heat exchanger
- Heat Transfer in superfluid helium
- Uncertainty and risks
- Summary and schedule

# Working group

- S. Kawasaki (KEK)
- T. Okamura (KEK)

Working Group Leader

Cryogenic calculation, Experimental design, Analysis


• C. Marshall and TRIUMF engineer group (TRIUMF)

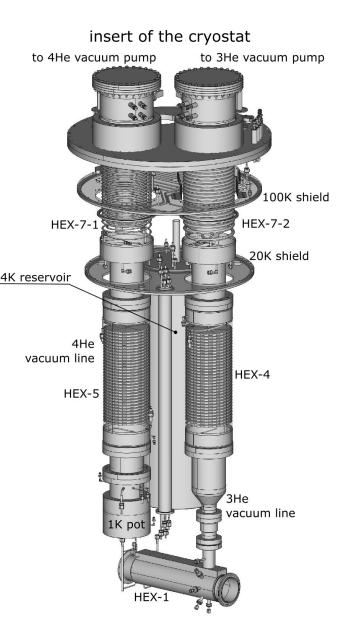
Design, Cryogenic calculation, Mechanical calculation

- T. Higuchi (RCNP)
- S. Imajo (RCNP)
- R. Matsumiya (TRIUMF)

- DAQ software, Data taking, Data analysis
- DAQ hardware, Data taking Data analysis
- Cryogenic calculation, Data analysis

#### Overview of Superfluid helium UCN converter cooling




Components

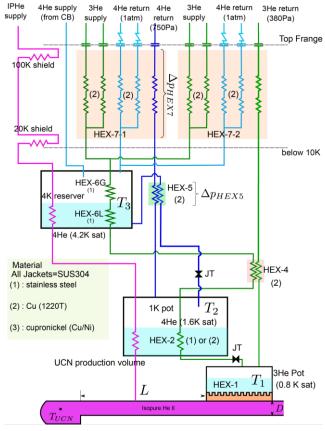
- 1. Helium-3 cryostat
  - Large cooling power :  $\sim$  11 W @1.0K,
    - 10 W: beam, 1 W: static
      - Including safety margin
      - Actual heat deposit: 8.1 W by beam
- 2. <sup>3</sup>He -<sup>4</sup>He Heat Exchanger design
  - Kapitza conductance
- 3. Heat transport in superfluid helium
  - Flow pattern
    - Superfluid turbulent
    - Gorter-Millink heat transfer

# 1. Helium-3 cryostat

- We decided to use a helium-3 cryostat as a superfluid helium-4 converter
  - better performance than helium-4 direct puming
    - Discussed in UCN source review in 2017
- Function
  - Condensate isotopically pure helium-4
  - Keep isotopically pure helium-4 temperature below 1.15 K
    - In order to produce UCN effectively
- Requirements
  - Cooling power: 11 W @ 1.0 K
    - Heat load: 10 W from beam, 1 W from static
      - Including safety margin
      - Actual heat deposit: 8.1 W by beam
  - Has to be placed behind radiation shield
    - L = 2.65 m
  - Minimize liquid helium consumption

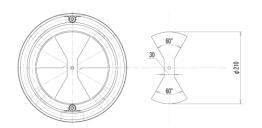
### Flow Diagram and Schematic Drawing

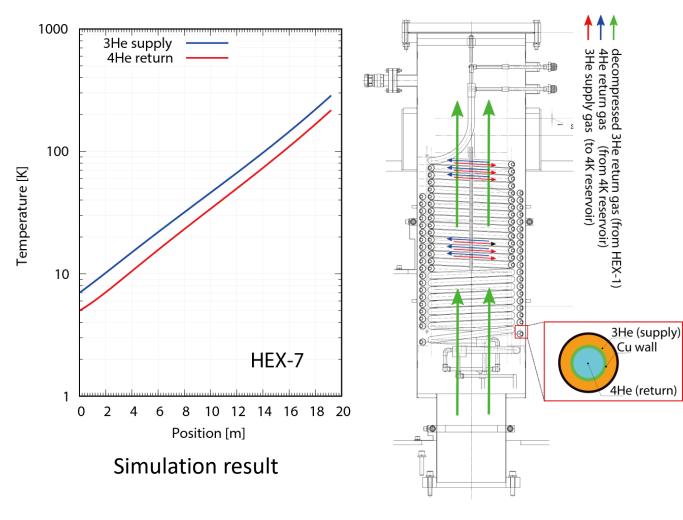



#### Liquid bath condition

|                     | 3He pot            | 1K pot             | 4K reservoir |
|---------------------|--------------------|--------------------|--------------|
| Bath<br>temperature | 0.8 K              | 1.6 K              | 4.2 K        |
| vapor pressure      | 378 Pa             | 746 Pa             | 1 bar        |
| Mass flow           | 1.14 g/sec         | 1.20 g/sec         | 2.28 g/sec   |
| Pumping speed       | > 8,800<br>m³/hour | > 3,700<br>m³/hour | No pumping   |

#### **Heat Exchangers**


Conceptual Flow diagram

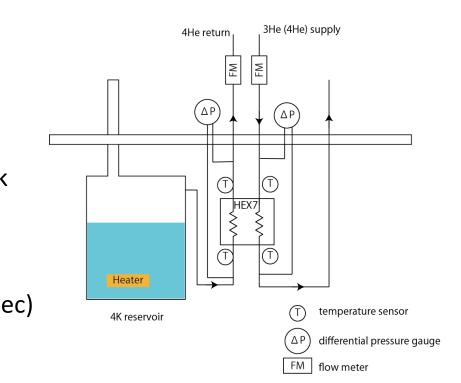

| Name  | Туре         | Coolant                    | Cooling Target                     |
|-------|--------------|----------------------------|------------------------------------|
| HEX-1 | Pool cooling | Liquid 3He (0.8 K, 380 Pa) | Isopure helium-4                   |
| HEX-2 | Pool cooling | Liquid 4He (1.6 K, 740 Pa) | Supplied 3He (G/L, 2.6 K -> 1.6 K) |
| HEX-4 | Counter flow | Return gas from 3He pot    | Supplied 3He (G, 4.2 K -> 2.6 K)   |
| HEX-5 | Counter flow | Return gas from 1K pot     | Supplied 4He (L, 4.2 K -> 2.8 K)   |
| HEX-6 | Pool cooling | Liquid 4He (4.2 K, 1 bar)  | Supplied 3He (G, 10 K -> 4.2 K)    |
| HEX-7 | Counter flow | Return gas from 4K res.    | Supplied 3He (G, 300 K -> 10 K)    |

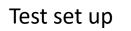


#### HEX-7

- Counter flow type heat exchanger
  - Cooling target: supply <sup>3</sup>He
    - 300K -> 10K
  - Coolant: return evaporating <sup>4</sup>He from 4K reservoir
- 4 parallel tube in tube
  - In order to reduce pressure drop inside tube
    - Outer tube: supply <sup>3</sup>He
    - Inner tube: return <sup>4</sup>He
- Total mass flow
  - Supply <sup>3</sup>He: 1.14 g/sec
  - Return <sup>4</sup>He: 1.91 g/sec
- Locate <sup>3</sup>He and <sup>4</sup>He pumping duct
  - To get additional cooling by pumping gas
- Simulation
  - To decide necessary length of each coil, numerical simulation was conducted
  - Only cooling by evaporated 4He is take into account
    - Conservative assumption
  - Assumption
    - Exit <sup>3</sup>He temperature: 7 K
    - Inlet 4He temperature: 5 K
  - Result: necessary length of each coil







Design of HEX-7

- Cryogenic test of the HEX-7
  - Conducted at KEK
  - One tube in tube coil
  - Use <sup>4</sup>He instead of <sup>3</sup>He
    - Main purpose of the test is to check validity of numerical simulation
  - Test in different mass flow condition

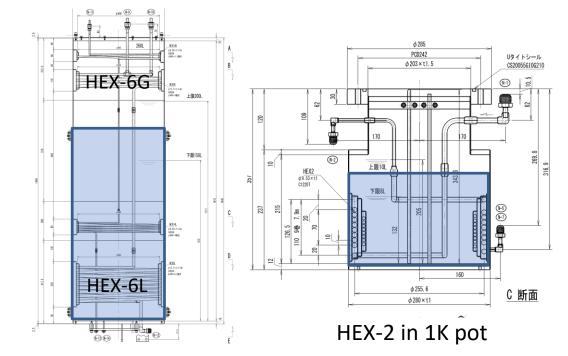
|         | <sup>3</sup> He | <sup>4</sup> He | (g/se |
|---------|-----------------|-----------------|-------|
| • RUN-1 | 0.28            | 0.47            |       |
|         | Design          | ed valu         | е     |
| • RUN-2 | 0.28            | 0.36            |       |

- RUN-3 0.14 0.36
- RUN-4 0.14 0.28
- RUN-5 0.14 0.20
- Test result is consistent with the simulation
  - Except Run-2
    - Not to reach stable condition?

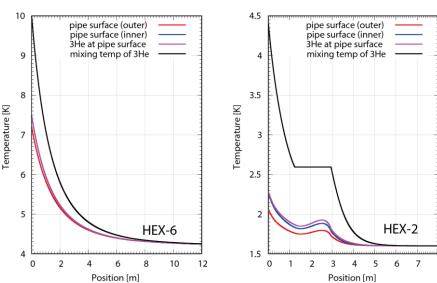







One of the HEX-7 coil

|        |                                 | Te                              | est result     |                 |                |                 |
|--------|---------------------------------|---------------------------------|----------------|-----------------|----------------|-----------------|
| Run-No | $\dot{m}_{3He} \ ({\rm g/sec})$ | $\dot{m}_{4He} \ ({\rm g/sec})$ | $T_{in_3}$ (K) | $T_{out_3}$ (K) | $T_{in_4}$ (K) | $T_{out_4}$ (K) |
|        |                                 |                                 | $(\exp/num)$   | $(\exp/num)$    | (exp/num)      | $(\exp/num)$    |
| RUN-1  | 0.28                            | 0.47                            | 296/291        | 6.4/7.6         | 6.1/6.1        | 181/176         |
| RUN-2  | 0.28                            | 0.36                            | 295/293        | 6.7/11.4        | 5.9/6.1        | 225/223         |
| RUN-3  | 0.14                            | 0.36                            | 294/289        | 6.2/6.2         | 6.0/6.1        | 123/115         |
| RUN-4  | 0.14                            | 0.28                            | 294/292        | 6.4/6.4         | 6.0/6.1        | 150/148         |
| RUN-5  | 0.14                            | 0.20                            | 294/292        | 7.4/8.4         | 6.2/6.1        | 206/204         |
|        | <b>↑</b>                        |                                 | ·              | ·               | ·              |                 |
|        | Actually                        | ′ <sup>4</sup> He               |                |                 |                | 8               |

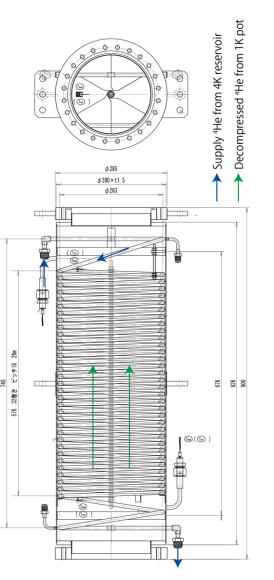

### HEX-2 & HEX-6

- Pool cooling heat exchanger for <sup>3</sup>He cooling
  - HEX-6: 10 K -> 4.2 K
    - HEX-6G in gas phase of 4K reservoir is used for a contingency when the HEX-7 doesn't work as expected
  - HEX-2: 2.8 K -> 1.6 K
    - <sup>3</sup>He is condensed inside the HEX-2
- Numerical simulation conducted to decide necessary length of coils
  - In order to have safety margin, HEX-2 was designed to cool down from 4.2 K

|                | HEX-6G                                     | HEX-6L                                         | HEX-2                                    |
|----------------|--------------------------------------------|------------------------------------------------|------------------------------------------|
|                | 4K res                                     | ervoir                                         | 1K Pot                                   |
| Coolant        | 1.6K Gas<br><sup>4</sup> He                | 4.2 K liquid <sup>4</sup> He                   | 1.6 K liquid <sup>4</sup> He             |
| Cooling target | <sup>3</sup> He<br>Contingency of<br>HEX-7 | <sup>3</sup> He<br>10 K -> 4.2 K<br>gas/liquid | <sup>3</sup> He<br>2.8 K -> 1.6 K<br>gas |
| Coil material  | Stainless Steel (SS304)                    |                                                | Copper (c1220)                           |
| Coil length    | 4m                                         | 12 m                                           | 8 m                                      |



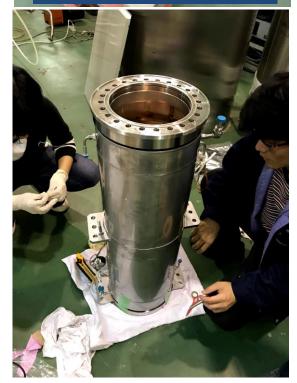
#### HEX-6 in 4K reservoir



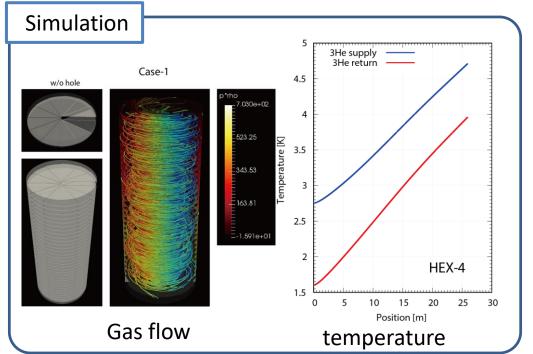

#### simulation

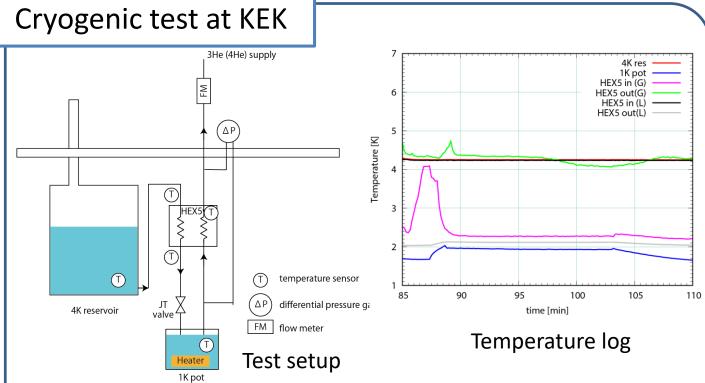
# HEX-4 & HEX-5 design

- HEX-4 and HEX-5 have same structure
  - HEX-4: precooling of  ${}^{3}$ He before the 1K Pot
  - HEX-5: precooling of <sup>4</sup>He before JT expansion
- Counter flow type heat exchanger
  - Originally designed Prof. Hosoyama (KEK)
  - Coil inside <sup>3</sup>He/<sup>4</sup>He pumping duct
  - Use a number of fins to make the heat transport efficiency high


|                          | HEX-4                                                                                    | HEX-5                                                  |  |
|--------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Location                 | Above 1K pot                                                                             | Above <sup>3</sup> He pot                              |  |
| Cooling target           | <sup>4</sup> He liquid                                                                   | <sup>3</sup> He gas                                    |  |
| Coolant                  | Return <sup>4</sup> He gas<br>from 1K pot                                                | Return <sup>3</sup> He gas<br>from <sup>3</sup> He pot |  |
| Coil tube                | Material: Copper (C1220T)<br>Length: 26 m<br>Diameter: 9.53 mm (O.D.)<br>Thickness: 1 mm |                                                        |  |
| Pumping duct<br>diameter | Diameter: 280<br>Thickness : 1.                                                          | · · ·                                                  |  |



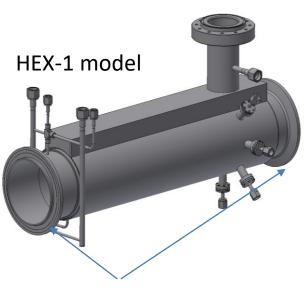

#### HEX-4 and HEX-5 design



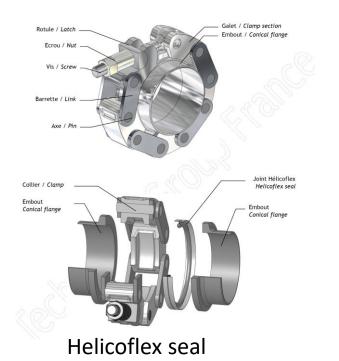

#### inside coil with fins



- Numerical simulation was conducted to decide dimension of HEX-4 and HEX5
- Cryogenic test of HEX-5was performed
  - Bench mark test of the simulation
  - Smaller mass flow
    - Design value : 1.3 g/sec
    - Experiment: 0.58 g/sec
      - Pumping power restriction
    - Control by heater power
- Results show HEX-5 works well
  - Outlet temperature is lower than simulation
  - Pressure drop is smaller than simulation







| Results     |                     |       | Simulation   | Experiment |
|-------------|---------------------|-------|--------------|------------|
|             | mass flow rate      | g/sec | 0.58 (input) | 0.58       |
|             | 4He (L) inlet       | К     | 4.5 (input)  | 4.23       |
| temperature | 4He (L) outlet      | К     | 2.45         | 2.11       |
| rat         | inlet FIN           | К     | 2.27 (input) | 2.27       |
| be          | outlet FIN          | К     | 4.27 (input) | 4.27       |
| en          | 4K reservoir        | К     | 4.25 (input) | 4.25       |
| Ţ           | 1 K pot             | К     | 1.93 (input) | 1.93       |
| p           | oressure drop (Gas) | Ра    | 12           | 6.62       |

# Other Cryogenic test

- Superleak tightness
  - New design Helicoflex flange for the HEX-1
  - AI SS junction using the UCN guide
    - UCN production volume: Al
    - UCN guide base material: SS We found no superleak



Helicoflex flange





Test setup of superleak of the Helicoflex flange

### Current status of the Cryostat construction

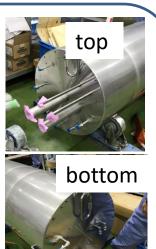
The Helium-3 Cryostat is constructed by JECC Torisha

- All heat exchangers were fabricated
- Leak check of fabricated components have done
- Almost all parts procurement was done
- Assembling has started
- Final acceptance/inspection will be done March 15th, 2020
- Assemble test of all the parts except the HEX-1 will be done at the company
- The cryostat will be delivered to KEK at the end of March, 2020

Thermal Shield



#### Thermal shield top plate (100K)







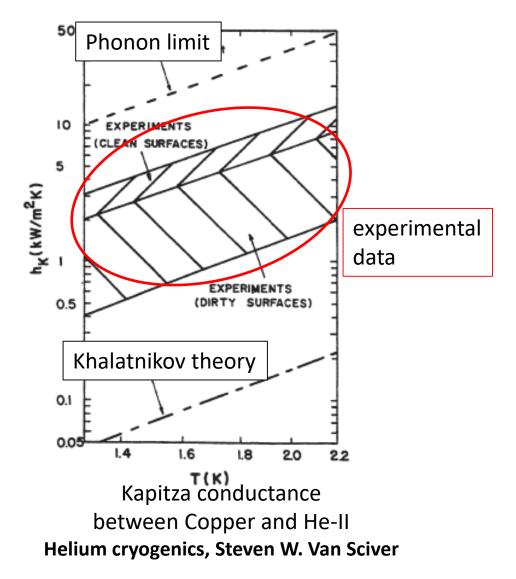




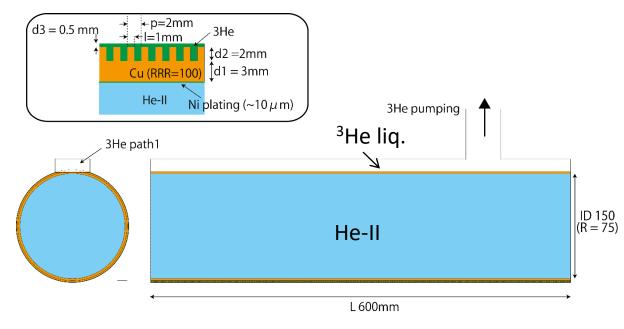








1K pot

# 2. <sup>3</sup>He-<sup>4</sup>He heat exchanger (HEX-1) design


- In order to convey the heat of isotopically pure <sup>4</sup>He UCN converter to <sup>3</sup>He, a heat exchanger is necessary
  - <sup>3</sup>He must be away from UCN
    - <sup>3</sup>He has large absorb crosssection to neutron
- Cylindrical shape is adopted for the <sup>3</sup>He <sup>4</sup>He heat exchanger
  - Inside : isotopically 4He
    - Serve as a part of UCN guide
      - Should be UCN friendly
      - Cannot have a fin structure
- At low temperature around 1.0 K, Kapitza conductance dominates heat transport at thermal boundary

### Kapitza Conductance

- Kapitza conductance is Conductance at the surface between liquid and solid is small at low temperature
- Kapitza conductance,  $h_{\kappa}(T)$  is a function of temperature.
- There are several theory on Kapitza conductance.
  - Phonon limit
    - $h_{K}(T) \simeq 4500 T^{3} [W/m^{2}K]$ 
      - 2 10 times larger than measured
  - Khalatnikov theory
    - $h_{K}(T) \simeq 20 T^{3} [W/m^{2}K]$ 
      - 10 100 times smaller than measured
  - $-K_G$  is commonly used for parametarization
    - $h_{K}(T) \sim 20 K_{G} T^{3} [W/m^{2}K]$
- Experimental data strongly depends on surface quality



### HEX-1 (Main Heat Exchanger) design



#### Kapitza conductance

- Kapitza conductance between Cu and He-II  $h_{K}(T) \sim 20^{*}K_{G}^{*}T^{3}[W/m^{2}K]$  $K_{G} = 20 - 60$
- Kapitza conductance between Ni and He-II  $h_{K \text{Ni}}(T) = f^*h_K(T)$  f = 0.61
- Kapitza conductance between Cu and <sup>3</sup>He  $h_{K_{3He}}(T) = a^*h_{K}(T)$  a = 1.2 – 2.6

$$T_{3He}$$

$$T_{Cu}$$

$$Cu (RRR=100)$$

$$T_{He-II}$$

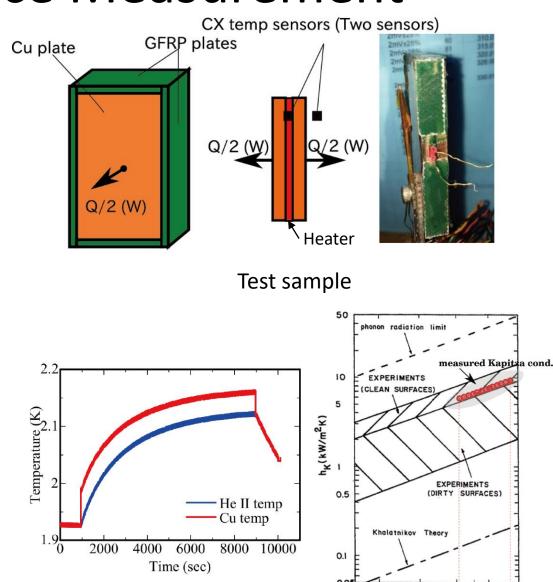
- Cylindrical shape
- Material : OFHC (RRR = 100)
- Inside : He-II
  - No fin
  - Surface area :Si = 0.28 m<sup>2</sup>
  - Ni plating
    - UCN friendly
- Outside : <sup>3</sup>He
  - Fin structure
    - Fin gap = 1 mm
    - Fin length = 2 mm
  - Surface area : So =  $0.89 \text{ m}_2$

ex)  $K_G = 40$ ,  $T_{3He} = 0.8$  K, Q = 11 W • junction between 3He and Cu •  $\Delta T_{Cu-3He} = 0.078$  K •  $T_{Cu} = 0.878$  K • junction between Cu and He-II •  $\Delta T_{Ni-HeII} = 0.118$ •  $T_{He-II} = 0.996$  K Temperature difference in the heat exchanger can be neglected

#### Kapitza conductance Measurement

- first Kapitza conductance test at KEK
- Sample
  - Material : Copper (OFHC)
  - A heater is inserted between two copper
- The temperature difference was measured as a junction of bath temperature

 $Q/2 = h_{K} * A * \Delta T$  $h_{K}$ : Kapitza conductance A : surface area


• Temperature range : 1.82 - 2.15 K

#### <u>Result</u>

- Confirm dependence of T<sup>3</sup>
- Enough Kapitza conductance

•  $K_{G} = 45 - 48$ 

 Lower temperature measurement is plan to be performed

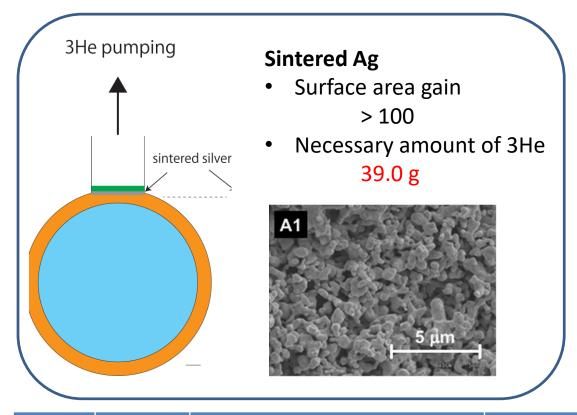


Van Sciver, Helium cryogenics

1.6

T(K)

1.8


2.0

22

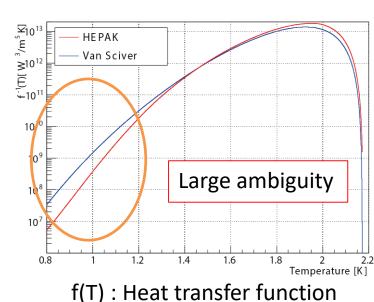
17

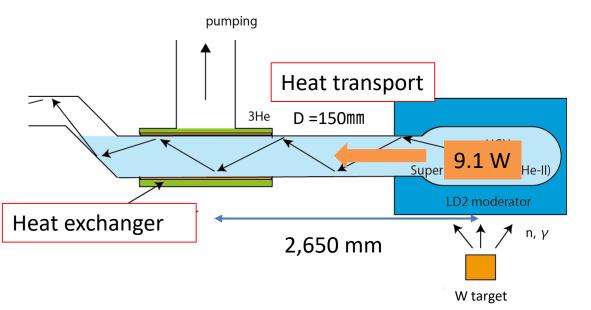
# R&D for the HEX-1

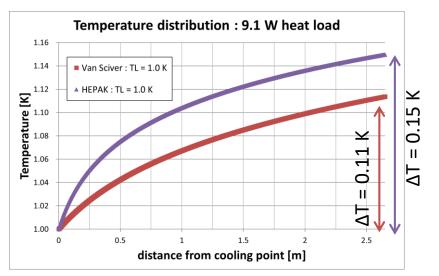
- HEX-1 prototype was fabricated at the KEK machine shop
  - ✓ Machining test
  - ✓ Superleak tightness
    - Performed superleak check -> found no leak
  - Cooling test
    - Will be done in Feb. Mar. 2020
    - Critical heat flux measurement
      - Not to occur film boiling
      - Critical heat of <sup>3</sup>He at 0.8 K:  $\sim 10^{-2}$  W/cm<sup>2</sup>
      - Safety factor 10 for the 2.0 m fins
      - Critical heat in case of narrow channel might be different
- New design to reduce necessary amount of <sup>3</sup>He
  - 2mm fin design needs 61.6 g of <sup>3</sup>He
    - Include piping
  - Shorter fins
    - Impact to the temperature at production volume is not so large
    - Depends on the result of critical heat flux
  - Sintered Ag
    - reduce necessary amount of helium



| Fin    |                                   | <b>Temperature</b><br>( Q=9.1 W,T <sub>3He</sub> = 0.8 K, KG=40, a = 2.6, f = 0.61,<br>HEPAK) |                        |                        | 3He<br>amount |
|--------|-----------------------------------|-----------------------------------------------------------------------------------------------|------------------------|------------------------|---------------|
| length | Heat Flux<br>[W/cm <sup>2</sup> ] | T <sub>HEX</sub> [K]                                                                          | T <sub>HeIIL</sub> [K] | T <sub>HellH</sub> [K] | g             |
| 2.0 mm | $1.0 \times 10^{-3}$              | 0.865                                                                                         | 0.967                  | 1.148                  | 61.6          |
| 1.5 mm | 1.2 × 10 <sup>-3</sup>            | 0.878                                                                                         | 0.975                  | 1.149                  | 57.0          |
| 1.0 mm | $1.5 \times 10^{-3}$              | 0.898                                                                                         | 0.989                  | 1.149                  | 52.3          |
| 0.5 mm | 2.1 × 10 <sup>-3</sup>            | 0.931                                                                                         | 1.012                  | 1.150                  | 43.8          |
| No fin | $3.1 \times 10^{-3}$              | 0.996                                                                                         | 1.063                  | 1.156                  | 35.3          |

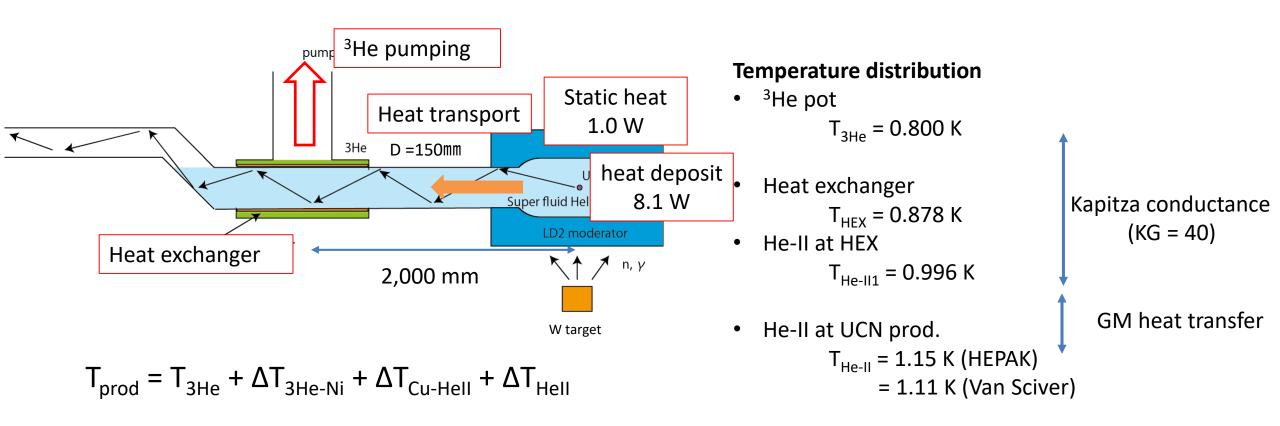

#### Production volume \_


### Temperature transfer in He-II


- below 1 K, heat transfer is not good because of low fraction of normal fluid which convey heat (two fluid model)
- Temperature difference in superfluid helium can be calculated numerically using following Gorter-Mellink equation

$$Q_{in} = \left(\frac{A^3}{L} \int_{T_L}^{T_H} f(T)^{-1} dT\right)^{1/3}$$

 $T_L$  : He-II temperature at the heat exchanger  $T_H$  : He-II temperature at the UCN production volume A : cross section of He-II diameter = 150 mm L : distance of heat transfer L = 2.65 m








Temperature distribution in UCN guide 19

#### Temperature distribution in our system

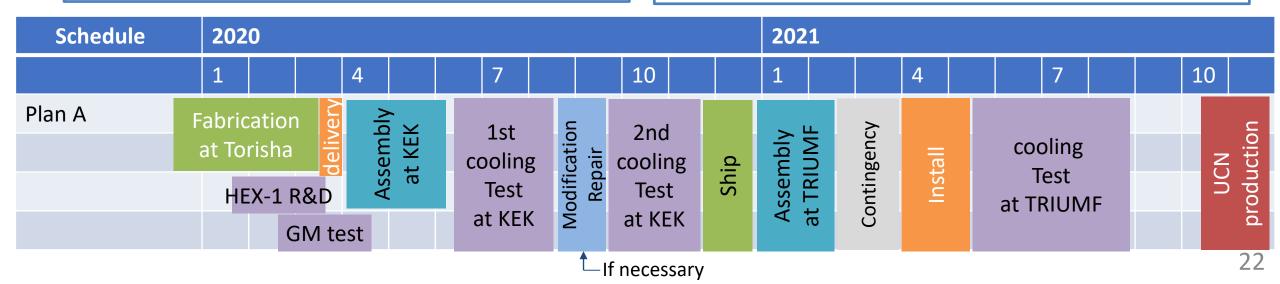


Current design meets our requirement Temperature at the production volume < 1.15 K

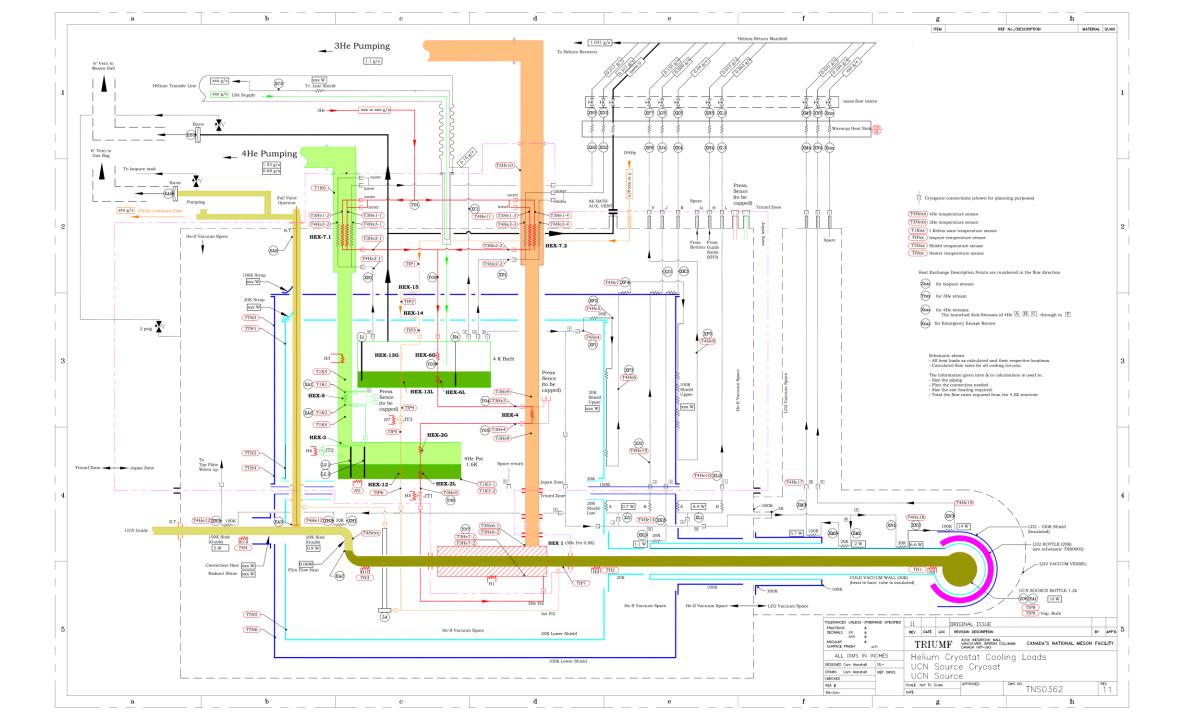
### Uncertainty and Risk

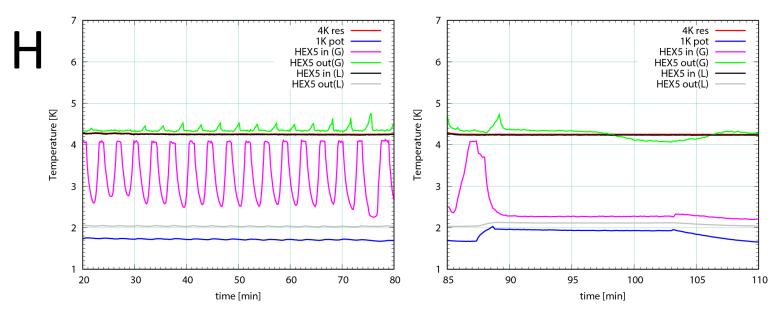
- Helium-3 cryostat
  - Liquid helium shortage

#### Mitigation


- Reduce beam current or duty cycle
- Liquefier upgrade
  - Will discuss by C. Gibson
- HEX1
  - Kapitza conductance at low temperature is smaller than expected
  - Critical heat in narrow channel is smaller than our expectation
  - Helium-3 procurement
  - Mitigation
    - Alternative HEX-1 design
    - HEX-1 can be replaceable
- GM heat transfer
  - GM heat transfer function is lower than expected
     Mitigation
    - Reduce beam current or duty cycle

### Summary and Schedule


- Achieved Milestone
  - CDR in 2017
  - Cryogenic test
    - HEX-5, HEX-7
    - Kapitza conductance test
    - Superleak tightness check
- Current status
  - Constructing helium cryostat
  - HEX-1 R&D


#### Cooling test

- At KEK
  - Use <sup>4</sup>He instead of <sup>3</sup>He since there is no <sup>3</sup>He available
  - Performance check,
    - Cold & Superleak, static, heat load, mass flow and pressure drop, cooling power, etc.
- At TRIUMF
  - Cooling test with <sup>3</sup>He
  - Ultimate cooling power will be tested



### backup





 The thermal oscillation was occurred when the mass flow is 0.35 g/sec

It was not stable

Mass flow of 0.35 g/sec

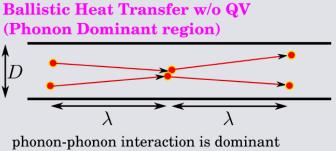
Mass flow of 0.58 g/sec

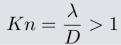
|                     |       | Design value | Experi      | iment          |
|---------------------|-------|--------------|-------------|----------------|
| mass flow rate      | g/sec | 1.3          | 0.35        | 0.58           |
| 4He (L) inlet       | К     | 4.3          | 4.25 / 4.66 | 4.23 / 4.5     |
| 4He (L) outlet      | К     | 2.5          | 2.03 / 2.45 | 2.11 / 2.45    |
| inlet FIN           | К     | 2.5          | 2.213-4.12  | 2.27           |
| outlet FIN          | К     | 3.4          | 4.36        | 4.27           |
| pressure drop (Gas) | Ра    | < 100        | 7.78 * / 5  | 6.62 / 12      |
| 4K res              | К     | 4.2          | 4.26        | 4.25           |
| 1 Kpot              | К     | 1.6          | 1.72        | 1.93           |
|                     |       |              | oscillation | no oscillation |
|                     |       |              | Data / Simu | lation         |

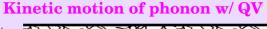
Data / Simulation

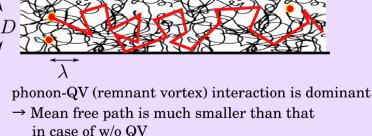
# Heat transport in superfluid helium 10 W @ ∼ 1.0 K




Normal fluid component is dilute around 1.0 K region


• Knudsen number 
$$K_n = \frac{\lambda}{D_{UCN}} < 1$$
,  
 $\lambda \sim 0.5 \ mm$ ,  $D_{UCN} = 150 \ mm$   
continuum flow

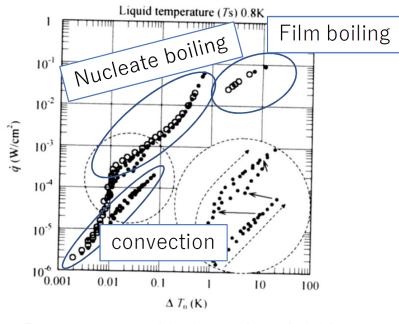

- Superfluid laminar or turbulent ?
  - Reynolds number of normal fluid component


$$R_{e_n} = \frac{|v_n - v_s| D_{UCN}}{v_n} \sim 10^6 \gg 1200 \sim 2600$$
  
superfluid turbulent

**Gorter-Mellink turbulent model used to evaluate heat transport** 










#### Possible problem about short (no) fin HEX1

- Boiling curve
  - Free convection (no boiling)
  - Nucleate boiling
    - Maximum heat transfer
  - Film boiling
- Heat flux

| fin length | Heat flux [W/cm <sup>2</sup> ] |
|------------|--------------------------------|
| 2mm        | 1.2 x 10 <sup>-3</sup>         |
| 1mm        | 1.8 x 10 <sup>-3</sup>         |
| No fin     | 3.7 x 10 <sup>-3</sup>         |



Boing curve of helium-3 at 0.8 K

- Heat flux of no fin design is still lower than the critical heat flux of 2 x  $10^{-2}$  W/cm<sup>2</sup> for the transition from nucleate boiling to film boiling
- However, critical heat in narrow channel might be different
  - Will be measured by the HEX1 test piece using helium-4