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Working group

• S. Kawasaki (KEK) Working Group Leader

• T. Okamura (KEK) Cryogenic calculation, Experimental design, 
Analysis

• C. Marshall and TRIUMF engineer group (TRIUMF)

Design, Cryogenic calculation, Mechanical 
calculation

• T. Higuchi (RCNP) DAQ software, Data taking, Data analysis

• S. Imajo (RCNP) DAQ hardware, Data taking Data analysis

• R. Matsumiya (TRIUMF) Cryogenic calculation, Data analysis
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W target

Overview of Superfluid helium UCN converter cooling

Components

1. Helium-3 cryostat

– Large cooling power : ～11 W @1.0K,

• 10 W: beam, 1 W: static

– Including safety margin

– Actual heat deposit: 8.1 W by beam

2. 3He -4He Heat Exchanger design
– Kapitza conductance

3. Heat transport in superfluid helium
– Flow pattern

• Superfluid turbulent

• Gorter-Millink heat transfer
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3He pumping

heat deposit

Heat exchanger

D =150㎜

2,650 mm

Heat transport

Tprod = T3He + ΔT3He-Ni + ΔTCu-HeII + ΔTHeII

Kapitza cond.
(HEX1)

Heat transfer in He-II

3He Cryostat 



1. Helium-3 cryostat

• We decided to use a helium-3 cryostat as a superfluid helium-4 converter
– better performance than helium-4 direct puming

• Discussed in UCN source review in 2017

• Function
– Condensate isotopically pure helium-4 
– Keep isotopically pure helium-4 temperature below 1.15 K

• In order to produce UCN effectively

• Requirements
– Cooling power: 11 W @ 1.0 K

• Heat load: 10 W from beam, 1 W from static
– Including safety margin
– Actual heat deposit: 8.1 W by beam

– Has to be placed behind radiation shield
• L = 2.65 m

– Minimize liquid helium consumption 
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Flow Diagram and Schematic Drawing
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Heat Exchangers

Name Type Coolant Cooling Target

HEX-1 Pool cooling Liquid 3He (0.8 K, 380 Pa) Isopure helium-4

HEX-2 Pool cooling Liquid 4He (1.6 K, 740 Pa) Supplied 3He (G/L, 2.6 K -> 1.6 K)

HEX-4 Counter flow Return gas from 3He pot Supplied  3He (G, 4.2 K  -> 2.6 K)

HEX-5 Counter flow Return gas from 1K pot Supplied 4He (L, 4.2 K -> 2.8 K)

HEX-6 Pool cooling Liquid 4He (4.2 K, 1 bar) Supplied 3He (G, 10 K -> 4.2 K)

HEX-7 Counter flow Return gas from 4K res. Supplied 3He (G, 300 K -> 10 K)

3He pot 1K pot 4K reservoir

Bath 
temperature

0.8 K 1.6 K 4.2 K

vapor pressure 378 Pa 746 Pa 1 bar

Mass flow 1.14 g/sec 1.20 g/sec 2.28 g/sec

Pumping speed > 8,800 
m3/hour

> 3,700 
m3/hour

No pumping

Conceptual Flow diagram

Liquid bath condition



Conceptual Flow diagram

HEX-7
• Counter flow type heat exchanger

– Cooling target: supply 3He
• 300K -> 10K

– Coolant: return evaporating 4He from 4K reservoir

• 4 parallel tube in tube 
– In order to reduce pressure drop inside tube

• Outer tube: supply 3He
• Inner tube: return 4He

• Total mass flow
– Supply 3He: 1.14 g/sec
– Return 4He: 1.91 g/sec

• Locate 3He and 4He pumping duct
– To get additional cooling by pumping gas

• Simulation
– To decide necessary length of each coil, numerical 

simulation was conducted
– Only cooling by evaporated 4He is take into account

• Conservative assumption

– Assumption
• Exit 3He temperature: 7 K
• Inlet 4He temperature: 5 K

– Result: necessary length of each coil
18 m
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Simulation result

Design of HEX-7
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• Cryogenic test of the HEX-7
– Conducted at KEK
– One tube in tube coil
– Use 4He instead of 3He

• Main purpose of the test is to check 
validity of numerical simulation

– Test in different mass flow 
condition

3He 4He     (g/sec)
• RUN-1 0.28 0.47   

Designed value
• RUN-2 0.28 0.36
• RUN-3 0.14 0.36
• RUN-4 0.14 0.28
• RUN-5 0.14 0.20

– Test result is consistent with the 
simulation
• Except Run-2

– Not to reach stable condition?

One of the HEX-7 coilTest set up

Actually 4He

Test result



Conceptual Flow diagram

HEX-2 & HEX-6
• Pool cooling heat exchanger for 3He cooling

– HEX-6: 10 K -> 4.2 K
• HEX-6G in gas phase of 4K reservoir is used for a 

contingency when the HEX-7 doesn’t work as 
expected

– HEX-2: 2.8 K -> 1.6 K
• 3He is condensed inside the HEX-2 

• Numerical simulation conducted to decide 
necessary length of coils
– In order to have safety margin, HEX-2 was 

designed to cool down from 4.2 K
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HEX-6G HEX-6L HEX-2

4K reservoir 1K Pot

Coolant 1.6K Gas
4He

4.2 K liquid 4He 1.6 K liquid 4He

Cooling target

3He
Contingency of 

HEX-7

3He
10 K -> 4.2 K

gas/liquid

3He
2.8 K -> 1.6 K

gas

Coil material Stainless Steel (SS304) Copper (c1220)

Coil length 4m 12 m 8 m

simulation

HEX-6 in 4K reservoir

HEX-2 in 1K pot

HEX-6G

HEX-6L



Conceptual Flow diagram

HEX-4 & HEX-5 design
• HEX-4 and HEX-5 have same structure

– HEX-4: precooling of 3He before the 1K Pot
– HEX-5: precooling of 4He before JT expansion

• Counter flow type heat exchanger
– Originally designed Prof. Hosoyama (KEK)
– Coil inside 3He/4He pumping duct
– Use a number of fins to make the heat transport efficiency 

high

10

HEX-4 HEX-5

Location Above 1K pot Above 3He pot

Cooling target 4He liquid 3He gas

Coolant Return 4He gas 
from 1K pot

Return 3He gas 
from 3He pot

Coil tube Material: Copper (C1220T)
Length: 26 m
Diameter: 9.53 mm (O.D.)
Thickness: 1 mm

Pumping duct 
diameter

Diameter: 280 mm (O.D.)
Thickness : 1.5 mm HEX-5

{{{

inside coil with fins

HEX-4 and HEX-5 design
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• Numerical simulation was conducted to decide 
dimension of HEX-4 and HEX5

• Cryogenic test of HEX-5was performed
• Bench mark test of the simulation
• Smaller mass flow

• Design value : 1.3 g/sec
• Experiment: 0.58 g/sec

• Pumping power restriction
• Control by heater power

• Results show HEX-5 works well
• Outlet temperature is lower than simulation
• Pressure drop is smaller than simulation

Results Simulation Experiment

mass flow rate g/sec 0.58 (input) 0.58

te
m

p
e

ra
tu

re

4He (L) inlet K 4.5 (input) 4.23

4He (L) outlet K 2.45 2.11
inlet FIN K 2.27 (input) 2.27

outlet FIN K 4.27 (input) 4.27
4K reservoir K 4.25 (input) 4.25

1 K pot K 1.93 (input) 1.93
pressure drop (Gas) Pa 12 6.62

Gas flow temperature

Temperature log
Test setup

Cryogenic test at KEK

Simulation



Other Cryogenic test
• Superleak tightness

– New design Helicoflex flange for the HEX-1
– Al – SS junction using the UCN guide

• UCN production volume: Al
• UCN guide base material: SS

We found no superleak
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Helicoflex flange

HEX-1 model
Helicoflex flange
test piece

Helium-4 bath

pumping

Helicoflex seal

Test setup of superleak of 
the Helicoflex flange



Current status of the Cryostat construction
The Helium-3 Cryostat is constructed by JECC Torisha

✓ All heat exchangers were fabricated

✓ Leak check of fabricated components have done

✓ Almost all parts procurement was done

• Assembling has started

• Final acceptance/inspection will be done March 15th, 2020

• Assemble test of all the parts except the HEX-1 will be done at the 
company

• The cryostat will be delivered to KEK at the end of March, 2020
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Top Flange
(Upside –down)

Thermal shield top plate (100K)

Vacuum chamber Thermal Shield

bottom

top
4K reservoir

1K pot



2. 3He-4He heat exchanger (HEX-1) design

• In order to convey the heat of isotopically pure 4He UCN 
converter to 3He, a heat exchanger is necessary
– 3He must be away from UCN

• 3He has large absorb crosssection to neutron

• Cylindrical shape is adopted for the 3He - 4He heat exchanger
– Inside : isotopically 4He

• Serve as a part of UCN guide
– Should be UCN friendly

– Cannot have a fin structure 

• At low temperature around 1.0 K, Kapitza conductance 
dominates heat transport at thermal boundary
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Kapitza Conductance

• Kapitza conductance is Conductance at the surface 
between liquid and solid is small at low 
temperature

• Kapitza conductance, hK(T) is a function of 
temperature.

• There are several theory on Kapitza conductance.
– Phonon limit

• hK(T) ~ 4500 T3 [W/m2K]
– 2 - 10 times larger than measured

– Khalatnikov theory
• hK(T) ~ 20 T3 [W/m2K]

– 10 - 100 times smaller than measured

– KG is commonly used for parametarization
• hK(T) ~ 20 KG T3 [W/m2K]

• Experimental data strongly depends on surface 
quality
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Kapitza conductance
between Copper and He-II

Helium cryogenics, Steven W. Van Sciver

Phonon limit

Khalatnikov theory

experimental
data



HEX-1 (Main Heat Exchanger) design
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Kapitza conductance
• Kapitza conductance between Cu and He-II

hK(T) ~ 20*KG* T3 [W/m2K]    
KG = 20 - 60

• Kapitza conductance between Ni and He-II
hK Ni (T) = f*hK(T)            f = 0.61

• Kapitza conductance between Cu and 3He
hK_3He(T) = a*hK(T)  a = 1.2 – 2.6 

ex) KG = 40 , T3He = 0.8 K, Q = 11 W
• junction between 3He and Cu

• ΔTCu-3He = 0.078 K
• T Cu = 0.878 K

• junction between Cu and He-II
• ΔTNi-HeII = 0.118
• T He-II = 0.996 K

Temperature difference in the heat 
exchanger can be neglected

He-II

3He liq.

• Cylindrical shape
• Material : OFHC (RRR = 100)
• Inside : He-II

• No fin
• Surface area :Si = 0.28 m2

• Ni plating
• UCN friendly

• Outside : 3He
• Fin structure

• Fin gap = 1 mm
• Fin length = 2 mm

• Surface area : So = 0.89 m2



Kapitza conductance Measurement
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• first Kapitza conductance test at KEK
• Sample

• Material : Copper (OFHC)
• A heater is inserted between two copper

• The temperature difference was measured as a 
junction of bath temperature

Q/2 = hK *A * ΔT
hK: Kapitza conductance
A : surface area 

• Temperature range : 1.82 - 2.15 K

Test sample

Result
• Confirm dependence of T3

• Enough Kapitza conductance
• KG = 45 – 48

• Lower temperature measurement is plan 
to be performed

Heater



• HEX-1 prototype was fabricated at the KEK machine 
shop
✓Machining test
✓Superleak tightness

• Performed superleak check -> found no leak

– Cooling test
• Will be done in Feb. – Mar. 2020
• Critical heat flux measurement

– Not to occur film boiling
– Critical heat of 3He at 0.8 K: ～10-2 W/cm2

– Safety factor 10 for the 2.0 m fins
– Critical heat in case of narrow channel might be 

different

• New design to reduce necessary amount of 3He
– 2mm fin design needs 61.6 g of 3He

• Include piping

– Shorter fins
• Impact to the temperature at production volume is not so large
• Depends on the result of critical heat flux

– Sintered Ag 
• reduce necessary amount of helium  
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Cu fins HEX-1 prototype

Fin 
length

Heat Flux
[W/cm2]

Temperature 
( Q=9.1 W,T3He = 0.8 K, KG=40, a = 2.6,  f = 0.61, 

HEPAK)

3He 
amount 

THEX [K] THeIIL[K] THeIIH[K] g

2.0 mm 1.0×10-3 0.865 0.967 1.148 61.6

1.5 mm 1.2×10-3 0.878 0.975 1.149 57.0

1.0 mm 1.5×10-3 0.898 0.989 1.149 52.3

0.5 mm 2.1×10-3 0.931 1.012 1.150 43.8

No fin 3.1×10-3 0.996 1.063 1.156 35.3

Production volume

R&D for the HEX-1 Sintered Ag
• Surface area gain

> 100 
• Necessary amount of 3He

39.0 g  



Heat exchanger

D =150㎜

2,650 mm

Heat transport

W target

Temperature transfer in He-II
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TL : He-II temperature
at the heat exchanger

TH : He-II temperature 
at the UCN production volume

A : cross section of He-II
diameter = 150 mm

L : distance of heat transfer
L = 2.65 m

• below 1 K, heat transfer is not good because of low 
fraction of normal fluid which convey heat (two fluid 
model)

• Temperature difference in superfluid helium  can be 
calculated numerically using following Gorter-
Mellink equation

Large ambiguity

f(T) : Heat transfer function 

Δ
T 

= 
0

.1
5

 K

Δ
T 

= 
0

.1
1

 K

Temperature distribution in UCN guide

9.1 W



W target

Temperature distribution in our system
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3He pumping

heat deposit
8.1 W

Heat exchanger

D =150㎜

2,000 mm

Heat transport

Tprod = T3He + ΔT3He-Ni + ΔTCu-HeII + ΔTHeII

Temperature distribution
• 3He pot

T3He = 0.800 K

• Heat exchanger 
THEX = 0.878 K

• He-II at HEX
THe-II1 = 0.996 K

• He-II at UCN prod.
THe-II = 1.15 K (HEPAK)

= 1.11 K (Van Sciver)

Kapitza conductance
(KG = 40)

GM heat transfer

Current design meets our requirement
Temperature at the production volume  < 1.15 K

Static heat 
1.0 W



Uncertainty and Risk
• Helium-3 cryostat

– Liquid helium shortage
Mitigation

• Reduce beam current or duty cycle
• Liquefier upgrade

– Will discuss by C. Gibson

• HEX1
– Kapitza conductance at low temperature is smaller than expected 
– Critical heat in narrow channel is smaller than our expectation
– Helium-3 procurement
Mitigation

• Alternative HEX-1 design
• HEX-1 can be replaceable

• GM heat transfer
– GM heat transfer function is lower than expected
Mitigation

• Reduce beam current or duty cycle
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Summary and Schedule
• Achieved Milestone

– CDR in 2017
– Cryogenic test

• HEX-5, HEX-7
• Kapitza conductance test
• Superleak tightness check

• Current status
– Constructing helium cryostat
– HEX-1 R&D
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2020 2021

1 4 7 10 1 4 7 10

Plan A Fabrication 
at Torisha

HEX-1 R&D

GM test
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Cooling test
• At KEK

– Use 4He instead of 3He since there is no 3He 
available

– Performance check,
• Cold & Superleak, static, heat load, mass flow 

and pressure drop, cooling power, etc.

• At TRIUMF
– Cooling test with 3He
– Ultimate cooling power will be tested
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Schedule

If necessary



backup
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HEX-5 test

• The thermal oscillation 
was occurred when the 
mass flow is 0.35 g/sec

– It was not stable
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Design value Experiment

mass flow rate g/sec 1.3 0.35 0.58
4He (L) inlet K 4.3 4.25 / 4.66 4.23 / 4.5 

4He (L) outlet K 2.5 2.03 / 2.45 2.11 / 2.45
inlet FIN K 2.5 2.213-4.12 2.27

outlet FIN K 3.4 4.36 4.27
pressure drop (Gas) Pa < 100 7.78 * / 5 6.62 / 12

4K res K 4.2 4.26 4.25
1 Kpot K 1.6 1.72 1.93

oscillation no oscillation
Data / Simulation

Mass flow of 0.58 g/secMass flow of 0.35 g/sec



3. Heat transport in superfluid helium
10 W @ ～ 1.0 K

• Flow pattern
– Normal fluid component is dilute around 1.0 K region

• Knudsen number 𝐾𝑛 =
λ

𝐷𝑈𝐶𝑁
< 1,

𝜆~0.5 𝑚𝑚, 𝐷𝑈𝐶𝑁 = 150 𝑚𝑚

continuum flow

– Superfluid laminar or turbulent？
• Reynolds number of normal fluid component

𝑅𝑒𝑛 =
|𝑣𝑛−𝑣𝑠|𝐷𝑈𝐶𝑁

𝜐𝑛
~106 ≫ 1200~2600

superfluid turbulent

Gorter-Mellink turbulent model used to evaluate heat 
transport 
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