

18th Workshop on Targetry and Target Chemistry

New metallic germanium target fabrication and dissolution techniques for the cyclotron production of positron-emitting ⁷¹As and ⁷²As

Yi-Hsuan Lo¹, Todd E. Barnhart¹ Jonathan W. Engle¹, Silvia S. Jurisson^{2,3}, Heather M. Hennkens^{2,3}, Paul A. Ellison¹

¹Department of Medical Physics and 2Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA

²Department of Chemistry, University of Missouri and ³University of Missouri Research Reactor Center, Columbia, MO 65211, USA

⁷⁷As beta emitter and ^{71/72}As positron emitter

⁷² Se 8.4 d Ec only	⁷³ Se 7.2 h 40 m	⁷² Se _{0.89%}	⁷⁵ Se 119.8 d EC only	⁷⁶ Se 9.4 %	⁷⁷ Se 7.6 %	⁷⁸ Se 23.8 %	⁷⁹ Se 4 m 3×10⁵y
⁷¹ As 65.3 h β+: 816 keV	⁷² As 26 h β+: 1117 keV.	73 As 80.3 h Ec only	74 A S 17.8 d β ⁺ β ⁻	⁷⁵ As 100 %	⁷⁶ A S 26.4 h β ⁻ : 2962 keV	⁷⁷ A S 38.8 h β ⁻ : 683 keV	⁷⁸ As 90.7 m β ⁻ : 4209 keV
⁷⁰ Ge 20.57%	⁷¹ Ge 11.43d Ec only	⁷² Ge 27.45%	⁷³ Ge 7.75%	⁷⁴ Ge 36.5%	⁷⁵ Ge 48 s 83 m	⁷⁶ Ge 7.73%	⁷⁷ Ge 53 s 11 h

119Sb MAe emitter

Homologous relationship with ¹¹⁹Sb

- [1] P.A. Ellison et al. Bioconjug. Chem. 27 (2016) 179–188.
- [2] Y. Feng et al., Appl. Radiat. Isot. 143 (2019) 113–122.
- [3] Matthew D.Gott et al., Journal of Chromatography A, 1441(2016) 68-74

GeO₂ target

Pre irradiation: After $4 \mu A^*$

Difficult to dissolve it and As isolation yield deceased.

4π-water-cooled target

Problem...Only tolerant to low beam.

Problem...

it is incompatible with deuterons and commercial solid target irradiation systems.

[4] P.A. Ellison et al., AIP Conf. Proc. 1509 (2012) 135-140.

[1] P.A. Ellison et al. Bioconjug. Chem. 27 (2016) 179–188.

Target making

Reclamation

Bombardment

Isolation (Cold experiment)

^{70/72}Ge

Target preparation

Ta coin (Ø=10 mm, 1 mm deep)

⁷²Ge (p,n) ⁷²As

⁷⁰Ge (d,n) ⁷¹As

Bombardment

Dissolution and Separation

Department of Medical Physics

University of Wisconsin School of Medicine and Public Health

Target making

Target making: Germanium bb making

Method

Target making: Ge target production

Method

Target making: Germanium bb making and Ge target production

Result

Ge bb	Initial Ge powder mass (mg)	Ge Loss (mg)	Ge % Loss	
making	~70	0.3 ± 0.27	0.5 ± 0.35	-
Ge-Ta target	Initial Ge bb mass (mg)	Ge loss on target (mg)	Ge % Loss	Ge thickness (μm)

Target making: Germanium bb making and Ge target production

Result

Ge bb	Initial Ge powder mass (mg)	Ge Loss (mg)	Ge % Loss	
making	~70	0.3 ± 0.27	0.5 ± 0.35	-
	Initial Ge bb mass	Ge loss on target	Ge % Loss	Ge thickness
Ge-Ta target	(mg)	(mg)	00 / 0 2000	(µm)

Theoretical thickness: 166 μm

Thickness =
$$\frac{mass}{\rho \times area} = \frac{0.07 g}{5.35 \frac{g}{cm^3} \times 0.25 \pi cm^2}$$

Department of Medical Physics

[5] K. Otozai, et al., Nucl. Phys. A. 107 (1968) 427–435.

[6] J.F. Ziegler et al., Nucl. Phys. B. 268 (2010) 1818–1823.

Bombardment: Irradiation study

Method & Result

Irradiation condition				
Projectile	Proton	Deuteron		
Energy	12 MeV	8 MeV		
Current	30μΑ	18.5 μΑ		
Target	nat	Ge		

Targetry	Reaction	Energy (MeV)	Experiment (mCi/µAh)	Theory (mCi/µAh) [5,7]
Prototype coin-type target	⁷² Ge(p,n) ⁷² As	12	2.5	5.7
	⁷⁰ Ge(d,n) ⁷¹ As	8	0.17	0.17

^{*}Enriched target yields extrapolated from experimental proton and deuteron irradiations of a ^{nat}Ge target

Before irradiation (proton)

After irradiation

(proton)

Before irradiation (deuteron)

After irradiation (deuteron)

Physics

[5] K. Otozai, et al., Nucl. Phys. A. 107 (1968) 427–435. [7] I. Spahn, et al., Appl. Radiat. Isot. 65 (2007) 1057–1064

Method

NH₄OH method

HCl method

Aqua Regia method

- ① Add 2 mL 0.48M NH_4OH in 30% H_2O_2
- ② Heated at 100 °C for 15 min.

- ① Add 2 mL 37% HCl
- ② Heated at 100 °C for 15 min.
- \odot Dropwise addition of 2 ml of 30% H₂O₂

- ① Add 2.5 mL aqua regia
- ② Heated at 100 °C for 30 min.

Result

Condition	dition		Ge-coated Ta coin	
Dissolution solution	0.48M NH ₄ OH [M] in 30% H ₂ O ₂		37% HCl with 30% H ₂ O ₂	Aqua regia [1]
Solution volume (mL)	2		2	2.5
Total reaction time (min)	15		15	30
Reaction Temp. (°C)	100	•	100	100
Ge mass dissolved (mg)	6.9 ± 0.7 (14±2%) n=20		20.7 ± 7.4 (25±10%) n=5	153± 12 (100%) n-=6
Ta coin mass dissolved (mg)	1.1 ± 0.2 n=4		0.1± 0.1 n=3	0.0±0.1 n=3

Conclusion

- Aqua regia condition dissolved more mass of Ge than others under the same reaction time.
- ◆ No significant mass lost for Ta coin under aqua regia condition.

Result

Condition			
Dissolution solution	0.48M NH ₄ OH [M] in 30% H ₂ O ₂	37% HCl with 30% H ₂ O ₂ [8]	Aqua regia [1]
Solution volume (mL)	2	2	2.5
Total reaction time (min)	15	15	30
Reaction Temp.	100	100	100
Ge mass dissolved (mg)	6.9 ± 0.7 (14±2%) n=20	20.7 ± 7.4 (25±10%) n=5	153± 12 (100%) n-=6
Ta coin mass dissolved (mg)	1.1 ± 0.2 n=4	0.1± 0.1 n=3	0.0±0.1 n=3

Conclusion

- Aqua regia condition dissolved more mass of Ge than others under the same reaction time.
- ◆ No significant mass lost for Ta coin under aqua regia condition.

Result

Condition	Ge-coated Ta coin					
Dissolution solution	0.48M NH ₄ OH [M] in 30% H ₂ O ₂	37% HCl with 30% H ₂ O ₂	Aqua regia [1]			
Solution volume (mL)	2	2	2.5			
Total reaction time (min)	15	15	30			
Reaction Temp.	100	100	100			
Ge mass dissolved (mg)	6.9 ± 0.7 (14±2%) n=20	20.7 ± 7.4 (25±10%) n=5	153± 12 (100%) n-=6			
Ta coin mass dissolved (mg)	1.1 ± 0.2 n=4	0.1± 0.1 n=3	0.0±0.1 n=3			

Conclusion

- Aqua regia condition dissolved more mass of Ge than others under the same reaction time.
- ◆ No significant mass lost for Ta coin under aqua regia condition.

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

$$GeO_2+4HCl \longrightarrow GeCl_4+2H_2O$$

Distillation and Hydrolysis:

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

$$GeCl_4+2H_2O \longrightarrow GeO_2+4HCl$$

^{71/72}AsCl₅ would remain in heating tube during distillation

Department of Medical Physics

Iniversity of Wisconsin School of Medicine and Public Health

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

Distillation and Hydrolysis:

$$GeO_2+4HCl \longrightarrow GeCl_4+2H_2O$$

$$GeCl_4+2H_2O \longrightarrow GeO_2+4HCl$$

^{71/72}AsCl₅ would remain in heating tube during distillation

Department of Medical Physics

Iniversity of Wisconsin School of Medicine and Public Health

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

$$GeO_2+4HCl \longrightarrow GeCl_4+2H_2O$$

Distillation and Hydrolysis:

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

$$GeCl_4+2H_2O \longrightarrow GeO_2+4HCl$$

^{71/72}AsCl₅ would remain in heating tube during distillation

Department of Medical Physics

University of Wisconsin School of Medicine and Public Health

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

$$GeO_2+4HCl \longrightarrow GeCl_4+2H_2O$$

Distillation and Hydrolysis:

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

$$GeCl_4+2H_2O \longrightarrow GeO_2+4HCl$$

^{71/72}AsCl₅ would remain in heating tube during distillation

Department of Medical Physics

Iniversity of Wisconsin School of Medicine and Public Health

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

Distillation and Hydrolysis:

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

$$GeCl_4+2H_2O \longrightarrow GeO_2+4HCl$$

^{71/72}AsCl₅ would remain in heating tube during distillation

Department of Medical Physics

University of Wisconsin School of Medicine and Public Health

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

Distillation and Hydrolysis:

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

$$GeCl_4+2H_2O \longrightarrow GeO_2+4HCl$$

^{71/72}AsCl₅ would remain in heating tube during distillation

Department of Medical Physics

Iniversity of Wisconsin School of Medicine and Public Health

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

Heat block

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

Distillation and Hydrolysis:

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

$$GeCl_4+2H_2O \longrightarrow GeO_2+4HCl$$

^{71/72}AsCl₅ would remain in heating tube during distillation

Department of Medical Physics

University of Wisconsin School of Medicine and Public Health

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

$$GeO_2+4HCl \longrightarrow GeCl_4+2H_2O$$

Distillation and Hydrolysis:

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

$$GeCl_4+2H_2O \longrightarrow GeO_2+4HCl$$

Reclamation:

GeO₂

Heated at 1045°C for 30 min

NatGe bb

Department of Medical Physics

Method

Dissolution:

$$Ge+4HNO_3 \longrightarrow GeO_2+4NO_2+2H_2O$$

$$GeO_2+4HCl \longrightarrow GeCl_4+2H_2O$$

$$GeO_2+4HCI \longrightarrow GeCl_4+2H_2O$$

Reclamation:

HCl capture method

NH₄OH neutralization method

NaOH neutralization method

Reclamation: Distillation and Reclamation

Method

HCl capture method

Reclamation: Distillation and Reclamation

Method

NH₄OH neutralization method

Dry out the precipitate and Heated at 350°C to remove salt

GeO₂

Reclamation: Distillation and Reclamation

Method

NaOH neutralization method

Reclamation

Result

Condition	HCl capture	NH ₄ OH neutralization	NaOH neutralization
Ge piece mass (mg)	142.2	153.6	151.7
	A	fter removing residual HCl or	salt
Nat GeO ₂ mass (mg)	103.5	86.4	53.8
		After reduction by H ₂	
Ge mass	67.5	55.3	19.6
		After bb making	
Ge bb mass	68.7	58.6	14.8
Reclamation efficiency %	48.3%	38.2%	9.8%

f Wisconsin School of

Conclusion

Target making

Bombardment

Isolation

Reclamation

- Target production:
 Improve the target
 production procedure to
 get fully covered Ge
 target.
- Reclamation:
 <u>HCl capture method</u>.

 Optimization for the procedure to increase the efficiency is needed.
- Target cooling problem:
 The Ge is melted during irradiation. We will use thinner Ta coin and try to make the thickness of Ge thinner.
- Separation of As from Ge:
 Aqua regia method
 displayed higher Ge mass
 dissolved and shorter
 dissolving time.

Department of Medical Physics

University of Wisconsin School of Medicine and Public Health

Acknowledgement

Thanks to

Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production grant DE-SC0022032.

Paul Ellison's Group

Cyclotron Group

Professor Jonathan W. Engle

Todd E. Barnhart, PhD

University of Missouri

Professor Heather M. Hennkens

Professor Silvia S. Jurisson

Thanks for your attention

Reference

- 1. P.A. Ellison et al. Bioconjug. Chem. 27 (2016) 179–188.
- 2. Y. Feng et al., Appl. Radiat. Isot. 143 (2019) 113–122.
- 3. Matthew D.Gott et al., Journal of Chromatography A, 1441(2016) 68-74
- 4. P.A. Ellison et al., AIP Conf. Proc. 1509 (2012) 135-140.
- 5. K. Otozai, et al., Nucl. Phys. A. 107 (1968) 427–435.
- 6. J.F. Ziegler et al., Nucl. Phys. B. 268 (2010) 1818–1823.
- 7. I. Spahn, et al., Appl. Radiat. Isot. 65 (2007) 1057–1064
- 8. Y. Feng et al., Appl. Radiat. Isot. 143 (2019) 113–122. [
- 9. J. W. Irvine, Jr., J. Phys. Chem. 46, 910 (1942) 910-914

Bombardment: Irradiation study

Method & Result

Irradiation condition				
Projectile	Proton	Deuteron		
Energy	12 MeV	8 MeV		
Current	30μΑ	18.5 μΑ		
Target	nat	Ge		

Targetry	Reaction	Energy (MeV)	Experiment (mCi/µAh)	Theory (mCi/µAh) [1,4]
Prototype	⁷² Ge(p,n) ⁷² As	12	2.5	5.7
coin-type target	⁷⁰ Ge(d,n) ⁷¹ As	8	0.17	0.17

^{*}Enriched target yields extrapolated from experimental proton and deuteron irradiations of a $^{\rm nat}$ Ge target

Energy (MeV) Thickness (μm) Cross section (bar) Activity 8 0.036 0.26 1.6×10 ⁵<				
		Thickness (μm)		Activity
	8	0.036	0.26	1.6×10 ⁵
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
4 0.024 0.01 4.2×10^3				
4 0.024 0.01 4.2×10 ³				•
	4	0.024	0.01	4.2×10 ³

$$A(Bq) = \rho \left(\frac{g}{cm^3}\right) \times x(cm) \times \sigma(cm^2) \times \frac{1}{A_W\left(\frac{g}{mol}\right)} \times A_N \times I\left(\frac{particles}{s}\right) \times (1 - e^{-\lambda t})$$

$$\rho = density \\ x = thickness \\ x = thickness \\ \sigma = cross\ section \\ A_W = atomic\ weight$$

$$A_N = Avogadro's \\ I = current\ intensity \\ t = irradiation\ time$$

Department of Medical Physics

University of Wisconsin School of Medicine and Public Health

Conclusion

Target making

Reclamation

- Target production
 Improve the target
 production procedure to
 get fully covered Ge
 target.
- Reclamation
 HCl capture method.
 Optimization for the procedure to increase the efficiency is needed.

Pombardment	Isolation	
Metal, Metallic Element or Alloy	Temperature - t - (°C) (K) (°F)	Thermal Conductivity - k - (W/m K) (Btu/(ft h °F))
Tantalum	-73	57.5
*	0	57.4
"	127	57.8
*	327	58.9
"	527	59.4
"	727	60.2
n	927	61
Titanium	-73	24.5
"	0	22.4
	127	20.4
	327	19.4
"	527	19.7
**	727	20.7
"	927	22

⁷⁷As beta emitter 77 Ge(n, γ)⁷⁷As

- End point energy ≈683 keV
- $T_{1/2}$ =38.8 h
- Problem...

The lack of imaging property which can provide in patient selection, target verification and dosimetry.

^{71/72}As positron emitter

⁷²Ge(p,n)⁷²As--UWisc PETtrace cyclotron

- $T_{1/2}$: ⁷¹As=65.3 h and ⁷²As=26 h
- End point energy: ⁷¹As=816 keV and ⁷²As=2500 keV

119Sb MAe emitter

Homologous relationship with ¹¹⁹Sb

