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EMMA in ISAC-II
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ISAC-II at TRIUMF
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High quality RIBs with 2 ≤ A/Q ≤ 6 
0.6A MeV ≤ Energy ≤ 16.5A MeV

At 6A MeV, implies at the target position 95% of the beam can be within 
0.5 mm of the optic axis with an angle of 5 mrad or less   



Nuclear Structure at the Extremes

Single-particle structure at extreme N/Z values, particularly at 
and near closed shells (single-nucleon transfer)

Pairing interactions in N ~ Z nuclei via (p,t), (3He,p), (d,α), (t,p)

Production and decay studies of highly neutron-rich nuclei via 
multi-neutron transfers, e.g. (18O,15O)

High-spin physics in neutron-deficient nuclei via fusion-
evaporation reactions (including isomers)
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Nuclear Astrophysics
 Direct Studies:

 Radiative capture 
reactions

 (α,n) and (α,p) 
reactions

 Time-reversed (α,p) 
reactions

 Indirect Studies: 
 Spectroscopy of 

unbound states
 Particle-decay 

branching ratios
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Defining the Problem I
 In transfer and fusion-evaporation reactions, spectroscopic 

information obtained from detecting light ejectiles and gamma rays

 Interpretation of spectra complicated or rendered impossible by 
background from other channels

 For transfers with light ejectile detection, kinematic lines obscured 
by diffuse background

 For fusion-evaporation, gamma spectra contaminated by lines from 
other nuclei, frequently produced much more copiously than the 
nucleus of interest

 Direct identification of residual nuclei required
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Defining the Problem II
 Use of particle detectors to directly detect recoils complicated by 2 

problems:

In both fusion-evaporation and transfer reactions in inverse 
kinematics, heavy recoils emerge from target within the 
cone of elastically scattered beam particles; for sufficiently 
intense beams, these detectors cannot count fast enough

For heavy recoils (m > 100 u), energy resolution of these 
detectors is insufficient to permit unique identification

 Recoil separator needed to separate recoils from beam, identify 
according to A and Z, and localize them for subsequent decay 
studies
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Requirements
 Must be capable of 0˚ operation with good beam rejection

 Short flight time will allow study of short half-life 
radioactivities

 Good energy resolution is not helpful
Energy and angular resolution of detected heavy recoils 

insufficient to resolve states for A > 30 beams
Energy-focussing operation desirable

 Large angular, mass/charge, and energy acceptances required 
for high collection efficiency

Angular acceptance should be symmetric
At least 2 charge states for sufficiently massive recoils

8



Acceptance and Resolution
 Angular and energy spreads largest for fusion-evaporation 

reactions (Ω ~ 10-30 msr, ΔE/E ~ ± 20%)

 Angle and energy spread not independent

 To take advantage of large angular acceptance, need large energy 
acceptance

 Large energy acceptance requires minimal chromatic aberrations 
to maintain resolving power 

 Mass resolution requirement set by single-nucleon transfer 
reactions in inverse kinematics: must have first order resolving 
power M/ΔM ≥ 400
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How About a Magnetic Spectrometer?
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EMMA: The ISAC-II Recoil Spectrometer

• EMMA: recoil mass spectrometer spatially separates heavy products 
of nuclear reactions from beam & disperses according to mass/charge 
ratios

• Solid angle = ± 3.6° by ± 3.6° = 15 msr 
• Energy acceptance = +25%, -17%
• Mass/charge acceptance = ± 4%
• 1st order m/q resolving power = 551
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EMMA Ion Optics: Mass Focus
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EMMA Ion Optics: Energy Focus
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TRIUMF-Built HV Supplies

14

• Built 3 positive and 3 negative
• All have been tested to |V| ≥ 325 kV
• Housed in re-entrant ceramic vessels 
• Pressurized with 3 bar SF6  



Complete ED2 Electrode Assembly
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Vacuum Systems

• Typical pressures in 3/4 vacuum sections in nTorr range; 1000 l/s turbos and 
1500 l/s cryos

• Focal plane box has a single 1000 l/s turbo; pressure in low 10-6 Torr range 
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Target Chamber

• Integral Faraday cup with 1 mm entrance aperture coincides spatially with 
target position

• Target wheel with 3 positions
• Pumped by beam line 500 l/s turbo; pressure in low 10-7 Torr range
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Slit Systems

• Plate slit systems upstream and downstream of dipole magnet
• More complex focal plane slit system has 2 plates and 2 rotatable fingers, 

allowing for 3 openings of variable width and position
18



Focal Plane Detectors
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Ionisation Chamber
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Ionisation chamber tested with alpha and fission sources on 
bench



December 2016 Test
• There was no time 

to commission with 
an alpha source 
prior to December 
16th beam time

• Bombarded thick 
Au foil with 80 
MeV 36Ar beam

• Tuned for multiply 
scattered beam with 
very large angular 
spread
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December 2016 Test
• Si-detector 

measured 
residual energy 
spread of 40% 
FWHM

• Consistent with 
filling nominal 
energy 
acceptance of 
+25%, -17%
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December 2016 Test

EMMA’s First M/Q Spectrum
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December 2016 Test

Measured mass/charge dispersion & resolving power consistent with ion 
optical calculations
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December 2016 Test
• Si-detector 

measured 
residual energy 
spread of 111% 
FWHM

• Consistent with 
filling energy 
acceptance + 
energy loss 
straggling in 
PGAC windows
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December 2016 Test
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Approved Experiments

• Three approved experiments, two of which require TIGRESS to be installed around 
EMMA target position

• Transfer experiment: 6Li(17O,d)21Ne to infer 17O(α,γ)21Ne reaction cross section for the 
s process; also requires SHARC

• Radiative capture experiment: direct measurement of p(83Rb,γ)84Sr reaction cross 
section at p process energies

• p(21Na,α)18Ne to infer 18Ne(α,p)21Na reaction cross section for Type I X-ray bursts

• Approved Letter of Intent: direct measurement of p(79Br,γ)80Kr reaction cross section
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Figure 1. Schematic of the SHARC setup, with the radioactive ion beam entering from the left. The
array consists of (from the left) upstream CD detector (a), upstream box (b), target holder operated from
rotary feedthrough (c), downstream box (d), and downstream CD detector (e, hidden). The radius of (a,e)
is 41.0 mm, while (b,d) each measure 48 mm along the beam direction (z). The distance between upstream
and downstream CD detectors is 141 mm.

2 Scientific programme

This multi-purpose nature of the SHARC detector array is reflected firstly in the physics programme
through which the array is utilised, and secondly in the diverse set of experimental techniques
applied to probe the structures and reactions in question. The physics programme covers questions
ranging from nuclear reaction rates in explosive stellar scenarios to nuclear structure around the
N⇡20 island of inversion and the structure of N⇡Z nuclei. To address such questions, a variety
of different techniques are used, including transfer studies, fusion evaporation reactions, Coulomb
excitation, and deep inelastic scattering.

2.1 Nuclear astrophysics

Nuclear processes driving nucleosynthesis in stars often cannot be studied directly in the laboratory.
Often, these reactions involve short-lived nuclei, and are furthermore hindered by the Coulomb re-
pulsion of the nuclei. In many cases, this combination makes direct observation of the reactions
difficult or even impossible. Reactions related to the breakout from the Hot-CNO cycles fall into
this category. In the Hot-CNO cycles, hydrogen is burnt to helium through a series of reactions
and radioactive decays in which isotopes of carbon up to neon in the mass range 12 to 18 catalyse
the hydrogen burning. At the high temperatures and densities reached in X-ray bursts [8], breakout
from the cycles into the region above mass 18 may take place and trigger the subsequent rapid
proton capture (rp-process) towards higher mass nuclei. When direct measurements are impossi-
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Future Plans
• Continue HV conditioning

• Both anodes and cathodes conditioned to 250 kV
• ED2 conditioned to ΔV = 425 kV, ED1 has only 

reached 340 kV so far 
• Alpha source acceptance/resolving power tests in August
• Elastic scattering and fusion evaporation reactions with 

stable Ar beam starting Sep. 23, to complete 
commissioning

• Standalone experiments possible in fall schedule
• TIGRESS move to EMMA target position anticipated 

during shutdown 2017-2018
• Inviting nuclear structure proposals
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