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INITIAL IDEAS OF QUANTUM 
COMPUTING

“Let the computer itself be built of 
quantum mechanical elements which obey 

quantum mechanical laws.”

RICHARD FEYNMAN (1982)
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In  this  pa pe r a  micros copic  qua n tum me cha nica l mode l o f compute rs  a s  
re pre s e nte d by Turing  ma chine s  is  cons tructe d. It is  s hown tha t for e a ch 
numbe r Na n d  Turing ma chine  Q the re  e xis ts  a  Ha milton ia n  HN ~ a nd a  cla s s  
o f a pp rop ria te  in itia l s ta te s  s uch tha t if ~QN(0) is  s uch a n initia l s ta te , the n 
~FoN(t) = exp(--iHNQt) ~on(0) corre ctly de s cribe s  a t time s  t3, t6,..., tan 
mode l s ta te s  tha t corre s pond  to  the  comple tion  o f the  firs t, s e cond,..., Nth 
computa tion  s te p o f Q. The  mode l pa ra me te rs  ca n be  a djus te d  s o tha t for a n 
a rb itra ry time  inte rva l A a round  re , tG,..., taN, the  "m a c h in e " pa rt o f tFQN(t) 
is  s ta tiona ry. 

KEY WORDS: Computer as a physical system; microscopic Hamiltonian 
models of computers; Schr6dinger equation description of Turing machines; 
Coleman model approximation; closed conservative system; quantum spin 
lattices. 

1. I N T R O D U C T I O N  

Th e re  a re  m a n y  re a s o n s  to  a t t e m p t  th e  c o n s t ru c t io n  o f a  q u a n t u m  m e c h a n ic a l 
m o d e l o f c o m p u te rs  a n d  th e  c o m p u ta t io n  p ro c e s s .  C o m p u te r s  a re  la rg e ,  fin ite  
p h ys ic a l s ys te m s  wh ic h  p la y  a n  im p o r t a n t  ro le  in  s c ie n c e  to d a y.  Th e  s u c c e s s  
in  d e ve lo p in g  s im p le  q u a n t u m  m e c h a n ic a l m o d e ls  o f c o m p le x  s ys te m s  s u c h  
a s  la t t ic e  s ys te m s ,  r in g  m o d e ls ,  ~  a n d  th e  m e a s u re m e n t  p ro c e s s  (~-6l e n - 
c o u ra g e s  o n e  to  t ry  to  d e ve lo p  s u c h  m o d e ls  fo r  th e s e  m o re  c o m p le x p ro c e s s e s .  

O f p o te n t ia lly  g re a te r  im p o r ta n c e  is  th e  fa c t  th a t  if o n e  is  to  m a ke  a n y 
p ro g re s s  to wa rd  g ivin g  a  q u a n t u m  m e c h a n ic a l d e s c r ip t io n  o f in te llig e n t 
b e in g s - - if it  is  p o s s ib le  a t  a lW, 8 )- - th e n  o n e  m u s t  firs t g ive  s u c h  a  d e s c r ip t io n  
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ALMOST 40 YEARS LATER

Copyright © D-Wave Systems Inc. 13

D-Wave Container –Faraday Cage - No RF Interference

IBM 
20Q 

Tokyo 
chip

D Wave 
2000Q

Google 
Sycamore

Forest Stearns, Google AI Quantum Artist in Residence
Erik Lucero, Research Scientist and Lead Production Quantum 

Hardware



WHAT IS A (UNIVERSAL) 
QUANTUM COMPUTER?

• Bits → qubits

• Exploit quantum properties: 
superposition, entanglement, 
interference

• Quantum logic gates

• Obey unitarity → reversible 
computing

Hadamard CNOT



WHAT IS A QUANTUM 
ANNEALER?

bias weights ⇒ ai
coupling strength ⇒ bij  qubits ⇒ qi

QUBO Quadratic Unconstrained 
Binary Optimisation

source: dwavesys on YouTube Slide credit: L. Linder
Kadowaki and Nishimori, PRE58 5355, 1998

Glover et al, arXiv:1811.11538

https://www.youtube.com/playlist?list=PLPvKnT7dgEsvVQwGgrlUVXBa2J6PAW8a4
https://www.youtube.com/playlist?list=PLPvKnT7dgEsvVQwGgrlUVXBa2J6PAW8a4
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.58.5355
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.58.5355
https://arxiv.org/abs/1811.11538
https://arxiv.org/abs/1811.11538


CURRENT QUANTUM 
COMPUTERS

Quantum processors on wikipedia

https://en.wikipedia.org/wiki/List_of_quantum_processors
https://en.wikipedia.org/wiki/List_of_quantum_processors


WHY ARE PEOPLE EXCITED?
• Quantum cryptography

• Shor’s algorithm

• Quantum simulation

• Quantum search

• Grover’s algorithm

• Huge information capacity

• Quantum machine learning

• Quantum supremacy

Circuit from Shor’s Algorithm

Quantum zoo

The Q Rule: Almost everything in quantum needs to have a Q in it

https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/


ASIDE: QUANTUM 
SUPREMACY

• In Oct 2019, Google published a paper in Nature claiming 
they had achieved quantum supremacy by solving a 
problem in 200s on Sycamore that would take Summit 10k 
years

• The problem: sampling numbers from a pseudo-
random quantum circuit

• Response from IBM: “We argue that an ideal simulation of 
the same task can be performed on a classical system in 2.5 
days and with far greater fidelity. “

• They argue that Google had neglected to account for disk 
space

Nature | Vol 574 | 24 OCTOBER 2019 | 505

Article

Quantum supremacy using a programmable 
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1, 
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,  
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1, 
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13, 
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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“the point when quantum 
computers can do things that 

classical computers can’t”

John Preskill, Caltech

https://www.nature.com/articles/s41586-019-1666-5
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.nature.com/articles/s41586-019-1666-5
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/


WHAT ARE THE PROBLEMS?
• Quantum decoherence

• Quantum noise

• Quantum error 
correcting codes

• Scalability (typically O(10s) 
qubits)

• Connectivity 11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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D-Wave qubit Adjacency 

Active qubits in green
Coupling to 5-6 qubits
Inactive qubits in red
Not a fully connected graph

Quantum error correcting code

Dyakanov, The Case Against Quantum Computing

Image Credit: J.R. Vlimant

https://spectrum.ieee.org/computing/hardware/the-case-against-quantum-computing
https://spectrum.ieee.org/computing/hardware/the-case-against-quantum-computing


UPGRADE ALERT: HL-LHC

Great for physics … but a challenge for computing



HL-LHC COMPUTING 
CHALLENGE

Combinatoric explosion that naively scales as n!



A SECOND PROBLEM: 
TECHNOLOGY

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data


SHIFTING COMPUTING 
LANDSCAPE
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Quantum 
Computing

?

Slide Credit: G. Stewart



COULD QUANTUM 
COMPUTING BE USEFUL FOR 

PARTICLE PHYSICS?



SIMULATING 
CORRELATIONS

Currently simulate events 
assuming the evolution of 

each particle is independent



SIMULATING CORRELATIONS
• This isn’t the full picture: 

particles are quantum 
mechanical objects

• Not fully independent

• Idea: exploit entanglement 
between qubits on a quantum 
computer to improve the 
description of the parton 
shower Image credit: C. BauerChristian Bauer

Quantum algorithms for High Energy Physics Simulations

L =f̄1(i/@ +m1)f1 + f̄2(i/@ +m2)f2 + (@µ�)
2

+ g1f̄1f1�+ g2f̄2f2�+ g12
⇥
f̄1f2 + f̄2f1

⇤
�

<latexit sha1_base64="KsAvf/PIKodS0nGXOONo+byeMZk="></latexit>

The mixing g12 gives several interesting effects

Different real emission amplitudes
give rise to interference

Virtual diagrams give rise to
flavor change without radiation

Need to correct both real and virtual effects
Similar to including subleading color

A very simple toy model

Bauer et al., arXiv:1904.03196

Toy Model

https://arxiv.org/abs/1904.03196
https://arxiv.org/abs/1904.03196


TOY MODEL RESULTS

Christian Bauer
Quantum algorithms for High Energy Physics Simulations

Figure 1: The normalized differential cross section for log ✓max (a,c) and the number of emissions

(b,d). Interference effects are turned on (g12 = 1) and off (g12 = 0), where the classical simu-

lations/calculations are expected to agree with the quantum simulations and measurements. The

top plots (a,b) show results for the case where � ! ff̄ is excluded as this can be run on current

quantum hardware. The bottom plots (c,d) include the � ! ff̄ with fewer steps to reduce the

computational complexity. The ratio plots compare the g12 = 0 and g12 = 1 simulation. Over 105

events contribute to each line and the statistical uncertainties are therefore negligible. Quantum

measurements are corrected for readout errors, as described in the Methods section.
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Bauer et al., arXiv:1904.03196

https://arxiv.org/abs/1904.03196
https://arxiv.org/abs/1904.03196


RECONSTRUC
TING TRACKS

HL-LHC: μ= 140-200

ATLAS S&C twiki

Track reconstruction is 
expected to have the 
largest CPU burden at 

the HL-LHC 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


DIFFERENT ALGORITHMS: 
ASSOCIATIVE MEMORY

Memory required scales 
far more slowly with the 

number of tracks

arXiv:1902.00498

Inspired by ideas for FTK

Slide credit: I. Shapoval

https://arxiv.org/abs/1902.00498
https://arxiv.org/abs/1902.00498


IMPLEMENTATION
• Developed QuAM circuit generators implementing the Trugenberger’s initialization and generalized Grover’s 

algorithms.

• use open-source quantum computing platform, Qiskit

• Supported backends

• IBM QE cloud-based quantum chips [5Q Yorktown/Tenerife, 14Q Melbourne, 20Q Tokyo]

• Local/remote noisy simulators

arXiv:1902.00498

Snip
pet

Slide credit: I. Shapoval

Ex.: complete circuit 
for retrieving one 2-bit 

pattern

Ex.: complete circuit 
for retrieving one 2-bit 

pattern

https://qiskit.org/
https://qiskit.org/
https://arxiv.org/abs/1902.00498
https://arxiv.org/abs/1902.00498


DIFFERENT ALGORITHMS: 
QUANTUM ANNEALING

• Reformulate track reconstruction as an energy minimisation problem → Solve using 
the D-Wave quantum annealer

• Solution time won’t scale with number of tracks

• Implement QUBO minimisation on D-Wave and study scaling with track multiplicity

• Inspired from *, but use triplets (3 hits) as the qubits

• Encode the quality of the triplets based on physics properties. Pair-wise 
connections b act as constraints (>0) or incentives (<0)

• Minimizing O means selecting the best triplets to form track candidates

arXiv:1902.08324

*Stimpfl-Abele & Garrido, Fast track 
finding with neural networks

https://arxiv.org/abs/1902.08324
https://arxiv.org/abs/1902.08324
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub


IMPLEMENTATION
• Dataset: simplified HL-LHC-like* 

dataset (focus on barrel, 1+ GeV, 5+ 
hits)

• Toy dataset, but representative of 
expected conditions at the HL-LHC

• QUBO solvers: qbsolv (D-Wave + 
simulation), neal (simulation)

• D-Wave 2X (1152 qubits), D-Wave 
2000Q (2048 qubits) 

*trackml Slide credit: L. Linder

Doublets for a dataset 
of 2456 particles and 

16855 hits

https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification


PERFORMANCE

Physics performance as a 
function of occupancy 
using a D-Wave 2X 
(qbsolv).

Timing  building: 0-20 min | 
solving: 0-12s (sim), 0-56 min 
(D-Wave)
D-Wave | sim.  Same physics,  
important time overhead with 
D-Wave

arXiv:1902.08324 Slide credit: L. Linder

https://arxiv.org/abs/1902.08324
https://arxiv.org/abs/1902.08324


DIFFERENT ALGORITHMS: 
QUANTUM HOUGH TRANSFORM

P.V.C. Hough (1962), R.O. Dude, P.E. Hart (1972), D.H. Ballard (1980) 

Slide Credit: A. Yadav



RESULTS

Slide Credit: A. Yadav Chen et al, arXiv:1908.07943

Local Maxima Detection 
using Grover-Long 
Algorithm

vote counts

Accumulator 
Space for 8 

tracks

https://arxiv.org/abs/1908.07943
https://arxiv.org/abs/1908.07943


QUANTUM MACHINE 
LEARNING

FINDING  
THE HIGGS BOSON



QUANTUM MACHINE 
LEARNING

Finding the Higgs boson

ATLAS, PLB784 (2018) 173CMS, PLB 716, 30-61
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https://arxiv.org/ct?url=https://dx.doi.org/10.1016/j.physletb.2018.07.035&v=ace75255
https://arxiv.org/ct?url=https://dx.doi.org/10.1016/j.physletb.2018.07.035&v=ace75255
https://www.sciencedirect.com/science/article/pii/S0370269312008581?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0370269312008581?via%3Dihub
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QUBO
Quadratic Unconstrained Binary Optimization

Simple conversion 
of binary 

weights to ±1

QAML CLASSIFIERS

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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QAML Weak/Strong Classifier

Define functions h
i
 of the

input variables into [-1,1]

such that 
➢ P(signal|h>0) > P(bkg|h>0)
➢ P(bkg|h<0) > P(signal|h<0)

i.e. Most signal on h>0, most

bkg on h<0

Define w
i
 as binary linear

combination of h
i

https://arxiv.org/abs/1109.0325 

Slide credit: J. R. Vlimant

(Quantum Adiabatic Machine Learning) 

Pudenz and Lidar, arXiv:1109.0325

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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QAML Target/Objective
Define as a “target” function

Per event error

Full error

➔ C
ij
 and C

iy
 are summations over the values of h

i
 over the training set

➔ λ is a parameter penalizing the number of non-zero w
i

https://arxiv.org/abs/1109.0325 

Implementation 
as QUBO

https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf
https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf
https://arxiv.org/abs/1109.0325
https://arxiv.org/abs/1109.0325


 ON D-WAVEH → γγ

LETTER RESEARCH

1 9  O C T O B E R  2 0 1 7  |  V O L  5 5 0  |  N A T U R E  |  3 7 7

where si =  ± 1 is the ith Ising spin variable, Jij =  Cij/4 is the coupling 
between spins i and j, and λ= − + ∑h C Ci i j ij

1
2

 is the local field on 
spin i. The problem that quantum or simulated annealing attempt to 
solve is minimizing H and returning the minimizing, ground-state spin 
configuration s{ }i i

g . The strong classifier is then constructed as

∑= ∈ −x xR s c( ) ( ) [ 1, 1]
i

i i
g

for each new event x that we wish to classify6. We introduce an addi-
tional layer into our study by also constructing strong classifiers from 
excited-state spin configurations.

As benchmarks for traditional machine learning methods, we train a 
deep neural network (DNN) using Keras9 with the Theano backend19, 
and an ensemble of boosted decision trees using XGBoost (XGB)10, 
using  optimized choices for training hyperparameters (details of which 
can be found in Supplementary Information).

We compare the ground-state configurations for λ ∈  {0.01, 0.05, 0.1,  
0.2, 0.4, 0.8}. A larger λ implies an increased penalty against including 
additional variables, and so we expect the variables included at λ =  0.8 
to be determining the performance of the classifiers. Table 3 presents 
the relative strength of the variables in determining the performance 
of the classifier by showing how often variables are included in the 
ground-state configuration of the full 36-variable problem derived from 
20 different training sets with 20,000 training events each, as a function 
of the penalty term λ. We find that two of the original kinematic 
 variables, pT

1  and | ηγγ| , are never included. The number of classifiers 
included in the ground state of the corresponding Hamiltonian of all 
20 training samples is 16 out of 36 for λ ≤  0.05 and the following three 
for λ =  0.8: (i) / γγp mT

2 , (ii) ∆ γγ −R p( )T
1 and (iii) / γγp pT

2
T . These three 

classifiers have the greatest effect on the performance of the network, 
but would have been difficult to guess a priori in their composite form. 
The physical reason for why these variables are important for the clas-
sifier can be gleaned by considering the kinematics of the system. The 
key difference between an event in which a Higgs boson decays to two 
photons and another process that produces two photons in its final state 
is the production of the heavy particle in the event. A heavy particle 
will require considerably more energy to boost perpendicular to the 
beamline and hence we would expect real Higgs events to have a char-
acteristically lower γγpT  than do background events. Because the system 
with the Higgs boson has less transverse boost, we would expect  
the two photons to have similar pT spectra. Consequently, the second 
most energetic photon will typically be higher than in events without 
the heavy process. The pT of the first photon is largely determined by 
the overall energy that is available in the collision, which is also  

set by mγγ; hence / γγp mT
1  is largely stochastic and provides little 

discrimination.
We estimate the receiver operating characteristic (ROC) curves on 

the training set and construct a final output classifier such that for 

Table 3 | Variable inclusion in the ground states of instances of the Ising problem
λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8 λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8

1 0 0 0 0 0 0 0 0 19 20 20 20 20 20 18 0 0
2 20 20 20 20 20 20 20 20 20 0 0 0 0 0 0 0 0
3 20 20 20 20 20 20 0 0 21 0 0 0 0 0 0 0 0
4 20 20 20 20 20 20 2 0 22 19 19 19 19 1 0 0 0
5 19 19 19 19 19 19 19 0 23 0 0 0 0 0 0 0 0
6 20 20 20 20 20 20 20 0 24 20 20 20 20 20 20 7 0
7 20 20 20 20 20 20 20 9 25 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 26 3 2 1 0 0 0 0 0
9 5 4 4 1 0 0 0 0 27 0 0 0 0 0 0 0 0
10 20 20 20 20 20 20 20 18 28 20 20 20 20 20 20 20 20
11 20 20 20 20 20 14 17 0 29 19 19 19 16 1 0 0 0
12 20 20 20 20 20 20 20 0 30 7 6 4 1 0 0 0 0
13 20 20 20 20 20 20 20 20 31 0 0 0 0 0 0 0 0
14 19 19 19 19 19 12 0 0 32 15 15 15 11 5 0 0 0
15 20 20 20 20 20 20 20 2 33 0 0 0 0 0 0 0 0
16 17 17 16 10 6 4 1 0 34 19 19 19 19 16 0 0 0
17 20 20 20 20 14 1 0 0 35 20 20 20 20 20 20 20 19
18 20 20 20 17 2 0 0 0 36 20 20 20 20 20 20 3 0

The variables are listed by number (see Table 2). We show how many out of 20 training sets had the given variable turned on in the ground-state con!guration. Of the 36 variables, 3 were included for 
all values of the penalty term λ and for all of the training sets, pT

2, / ∆ γγRp1 ( )T
 and / γγp pT

2
T

; the variables / −p p p( )T
2

T
1

T
2  and η+ /∆p p( )T

1
T
2  were present in almost all; and 7 were never included, among which 

are the original kinematic variables pT
1 and ηγγ. 
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Figure 3 | Receiver operating characteristic (ROC) curves for the 
annealer-trained networks with f = 0.05, the DNN and XGB.  
a–d, Results shown are for the 36-variable networks at λ =  0.05, trained 
on 100 (a and b) or 20,000 (c and d) events. The ROC curve illustrates 
the diagnostic ability of a binary classifier system as its discrimination 
threshold is varied, and is created by plotting the background rejection 
against the signal efficiency at various threshold settings. The short-
dashed black line indicates no discrimination. Solid lines correspond to 
quantum (QA; green) or simulated (SA; blue) annealing, and dotted lines 
to the DNN (red) or XGB (cyan). Error bars are defined by the variation 
over the training sets and statistical error; 1σ error bars for quantum 
annealing and the DNN are shown as light blue and pale yellow shading, 
respectively, in a and c. The 1σ error bars for simulated annealing and XGB 
are included in b and d, but are too small to be visible owing to the larger 
number of events. For 100 events the annealer-trained networks have a 
larger AUROC, as shown directly in Fig. 4. The situation is reversed for 
20,000 training events.
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Solving a Higgs optimization problem with quantum 
annealing for machine learning
Alex Mott1†*, Joshua Job2,3*, Jean-Roch Vlimant1, Daniel Lidar3,4 & Maria Spiropulu1

The discovery of Higgs-boson decays in a background of standard-
model processes was assisted by machine learning methods1,2. The 
classifiers used to separate signals such as these from background 
are trained using highly unerring but not completely perfect 
simulations of the physical processes involved, often resulting in 
incorrect labelling of background processes or signals (label noise) 
and systematic errors. Here we use quantum3–6 and classical7,8 
annealing (probabilistic techniques for approximating the global 
maximum or minimum of a given function) to solve a Higgs-
signal-versus-background machine learning optimization problem, 
mapped to a problem of finding the ground state of a corresponding 
Ising spin model. We build a set of weak classifiers based on the 
kinematic observables of the Higgs decay photons, which we then 
use to construct a strong classifier. This strong classifier is highly 
resilient against overtraining and against errors in the correlations 
of the physical observables in the training data. We show that the 
resulting quantum and classical annealing-based classifier systems 
perform comparably to the state-of-the-art machine learning 
methods that are currently used in particle physics9,10. However, in 
contrast to these methods, the annealing-based classifiers are simple 
functions of directly interpretable experimental parameters with 
clear physical meaning. The annealer-trained classifiers use the 
excited states in the vicinity of the ground state and demonstrate 
some advantage over traditional machine learning methods for 
small training datasets. Given the relative simplicity of the algorithm 
and its robustness to error, this technique may find application 
in other areas of experimental particle physics, such as real-time 
decision making in event-selection problems and classification in 
neutrino physics.

The discovery of the Higgs boson at the Large Hadron Collider 
(LHC)1,2 marks the beginning of a new era in particle physics. 
Experimental particle physicists at the LHC are measuring the 
 properties of the new boson11,12, searching for heavier Higgs bosons13 
and trying to understand whether the Higgs boson interacts with 
dark matter14. Cosmologists are trying to understand the symmetry- 
breaking Higgs phase transition that took place early in the history 
of the Universe and whether that event explains the excess of matter 
compared to antimatter15. The measured mass of the Higgs boson13 
implies that the symmetry-breaking quantum vacuum is  metastable16 
unless new physics intervenes. The implications of the discovery  
of the Higgs boson will keep motivating physics research for years  
to come.

One of the key requirements for precisely measuring the  properties 
of the Higgs boson is selecting large, high-purity samples that  contain 
the production and decay of a Higgs particle. Machine learning 
 techniques17 could potentially be used as powerful tools for selecting 
such samples, but challenges remain. These challenges are greater when 
an investigation requires faithful simulation not only of the physics 

observables themselves, but also of their correlations in the data. In 
the measurement of the properties of the Higgs boson11, disagree-
ments between simulations and observations result in label noise and 
 systematic uncertainties in the efficiency of the classifiers that adversely 
effect the classification performance and translate into uncertainties on 
the measured properties of the discovered particle.

To address these challenges in the Higgs-signal-versus-background 
optimization problem, we study a binary classifier that is trained 
with classical simulated annealing7,8 and quantum annealing3–6,18. 
To implement quantum annealing we use a programmable quantum 
annealer (D-Wave Systems, Inc.) housed at the University of Southern 
California’s Information Sciences Institute, which comprises 1,098 
superconducting flux qubits. The optimization problem is mapped to 
one of finding the ground state of a corresponding Ising spin model.  
We use the excited states in the vicinity of the ground state in the 
 training method to improve the accuracy of the classifiers beyond 
the baseline ground-state-finding model. We refer to this approach as 
quantum annealing for machine learning (QAML).

1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA. 2Department of Physics, University of Southern California, Los Angeles, California 90089, USA. 3Center 
for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, USA.4Departments of Electrical Engineering, Chemistry and Physics, University 
of Southern California, Los Angeles, California 90089, USA. †Present address: DeepMind, London, UK. 
*These authors contributed equally to this work.
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Figure 1 | Representative Feynman diagrams of processes that 
contribute to the simulated distributions of the Higgs signal and of the 
background standard-model processes. The signal corresponds to the 
production of a Higgs boson (H) through the fusion of two gluons (g), 
which then decays into two photons (γ) (top). The gluon fusion and Higgs 
decay processes both proceed through virtual top quark (t) loops; t is an 
antitop quark. Representative leading-order and next-to-leading-order 
background processes are standard-model two-photon production 
processes (bottom).
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a signal efficiency εS we use the strong classifier sampled from the 
annealer with the maximum background rejection rB. We construct 
such compound classifiers for simulated and quantum annealing using 
excited states within a fraction f of the ground-state energy Eg—that is, 
all {si} such that H({si}) <  (1 −  f)Eg (note that Eg <  0). Simulated anneal-
ing is used as a natural comparison to quantum annealing on these fully 
connected problems.

In our experiments, quantum annealing struggles to find the true 
minimum of the objective function. This is probably a consequence 
of the fact that the current generation of D-Wave quantum annealers 
suffers from non-negligible noise on the programmed Hamiltonian. 
The problem of noise is compounded by the relatively sparse graph, 
which requires a chain of qubits to embed the fully connected  logical 
Hamiltonian. In our case, 12 qubits are ferromagnetically coupled 

to act as a single logical qubit. We therefore study and interrogate 
 current-generation quantum annealers and interpret their performance 
as a lower bound for the performance of future systems with lower 
noise and denser hardware graphs.

In Fig. 3 we plot the ROC curves illustrating the ability to discrimi-
nate between signal and background for each algorithm, with f =  0.05 
and training datasets with 100 or 20,000 events. We observe a clear 
separation between the annealing-based classifiers and the binary- 
decision-tree-based XGB and DNN classifiers, with the advantage of 
the annealers appearing for small training datasets, but  disappearing 
for the larger datasets. In Fig. 4 we plot the area under the ROC 
curve for each algorithm, for training datasets of various sizes and 
f =  0.05 (the largest value we used). An ideal classifier would have 
an area of 1. We find that quantum and simulated annealing have 
comparable performance, implying high robustness to approximate 
solutions of the training problem. This feature appears to general-
ize across the domain of QAML applications (Li, R. et al., submitted  
manuscript). Here the asymptotic performance of the QAML model is 
achieved with just 1,000 training events, and thereafter the algorithm 
does not benefit from additional data. This is not true for the DNN or 
XGB. A notable finding of our work is that QAML has an advantage 
over both the DNN and XGB when training datasets are small. This is 
shown in Fig. 5 in terms of the integral of the true negative differences 
over signal efficiency for various ROCs. In the same regime of small 
training datasets, quantum annealing develops a small advantage over 
simulated annealing as the fraction of excited states f used increases, 
saturating at f =  0.05. However, the uncertainties are too large to draw 
definitive conclusions in this regard. In the regime of large training 
datasets, simulated annealing has a small advantage over quantum 
annealing, to a significance of approximately 2σ.

In our study we have explored QAML, a simple method inspired by 
the prospect of using quantum annealing as an optimization technique 
for constructing classifiers, and applied the technique to the  detection 
of Higgs decays. The training data are represented in a compact 
 representation of O(N2) couplers and local biases in the Hamiltonian 
for N weak classifiers. The resulting strong classifiers perform compa-
rably to the state-of-the-art standard methods that are currently used in 
high-energy physics, and have an advantage when the training datasets 
are small. The role of quantum annealing is that of a subroutine for 
sampling the Ising problem that may in the future have advantages 
over classical samplers, either when used directly or as a way of seeding 
classical solvers with high-quality initial states.

QAML is resistant to overfitting because it involves an explicit 
linearization of correlations. It is also less sensitive to errors in the 
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Figure 4 | Area under the ROC curve (AUROC) for the annealer-trained 
networks with f = 0.05, the DNN and XGB. Results shown are for the 
36-variable networks at λ =  0.05. As in Fig. 3, the solid lines correspond 
to quantum (green) or simulated (blue) annealing, and dotted lines to the 
DNN (red) or XGB (cyan). The vertical lines denote 1σ error bars, defined 
by the variation over the training sets (grey) plus statistical error (green); 
see Supplementary Information section 6 for details of the uncertainty 
analysis. Whereas the DNN and XGB have an advantage for large training 
datasets, we find that the annealer-trained networks perform better for 
small training datasets. The overall performance of QAML and its features, 
including the advantage at small training-dataset sizes and saturation of 
the AUROC at approximately 0.64, are stable across a range of values of 
λ. An extended version of this plot, for various values of λ, is shown in 
Supplementary Fig. 2.
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Figure 5 | Difference between the AUROCs for different algorithms.  
a, Quantum annealing versus the DNN (QA −  DNN). b, Quantum 
annealing versus XGB (QA −  XGB). c, Quantum versus simulated 
annealing (QA −  SA). In all cases, the difference is shown as a function of 
training-dataset size and fraction f above the minimum energy returned 

(the same values of f are used for quantum and simulated annealing in c). 
Formally, we plot ∫ ε ε ε−r r[ ( ) ( )]di

0
1

B
QA

S B S S, where rB is the maximum 
background rejection, i ∈  {DNN, XGB, SA} and εS is the signal efficiency. 
The vertical lines denote 1σ error bars. The large error bars are due to 
noise on the programmed Hamiltonian.
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VARIATIONAL SVM
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PERFORMANCE
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SUMMARY

Simulation Track Reconstruction Machine Learning for Physics

Exciting recent developments in quantum computing

How might they be useful for particle physics?
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