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“...we would ask you to speak about the future of
machine learning and its potential applications in the
field over the coming 20 years.” - organizers
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FPGA accelerators
Computer Vision
GPU accelerators

... + more:)



SCIENCE!
4

machine learning potential applications
coming 20 years

Goal: make the hype cycle for ML in Science

How: look at science and technology frontiers for
ML application development in science



Machine Learning Discoveries

Impactful Scientific Applications in 5, 10, and 20 years
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1. Machine ‘Ié—al‘hing for scientific experiments

2, Advancement in eco- systems around ML
3. Hype cycle in scwnce 5
e l"‘\;‘-\\ \ ~ || - l"‘\



Machine Learning Discoveries
ML for Science Experiments

Landscape: where ML applied?

Facilities:
detector,
accelerator,

a:

Target Physics
... and nuisance
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Machine Learning Discoveries
ML for Science Experiments

Landscape: where ML applied?

e Experiment design optimization Edge-ML for smart
. . t : ll l .
e Facility control / DAQ riggers / online analysis
e Simulation & analysis —
. . Facilities:
e Physics extraction detector, [> Real data

accelerator,

Optimization

Target Physics of design +
... and nuisance control

|

Physics
Extraction

Invertible
simulator for
physics extraction

[> Synthetic
Simulator data

Fast-ML / smart sampling

Physics-informed ML and UQ
For physics extraction



Machine Learning Discoveries
ML for Science Experiments

. Experiment
Design (Simulator)

Physics ke Facility
Extraction - Control




Machine Learning Discoveries
Experiment Design Optimization
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Ingredient: physics modeling = simulator

i
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Goal: optimize the configuration parameters to
optimize an objective function for design metrics
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Challenge: simulator complex and expensive
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Machine Learning Discoveries
Experiment Design Optimization
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https://arxiv.org/abs/1903.07759

Machine Learning Discoveries
Experiment Design Optimization
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e gais e NN surrogate: gradient optimization
¢ 7 F& o Generative NN surrogate to approximate the
R S Gt ] [ stochastic gradient of true simulator
R Bl (non-differentiable), which enables direct
.  ants optimization using back-propagation
S R . o arXiv:2002.04632... promising initial work!
-0.72 SN;: R Y hss Z: . . .
o R A Ex gl T m ... with a comparison to other methods (Bayesian
w] T optimization using Gaussian Process, etc.)
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https://arxiv.org/abs/2002.04632

Machine Learning Discoveries
Experiment Design Optimization
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Ingredient: physics modeling = simulator

Goal: optimize the configuration parameters to
optimize an objective function for design metrics

Challenge: simulator complex and expensive

Take aways
e Stochastic simulation (e.g. particle scattering) = non-differentiable
likelihood often intractable to use directly for optimization
e ML surrogates for black-box (simulator) optimization as an alternative
o Also applicable: Bayesian optimization using GP (later), likelihood free
inference (later), etc. but less used for design optimization

e Let’s take a good design = less $$ more science! ”



Machine Learning Discoveries
Facility operation and data taking

Ingredients: accelerator, detector, DAQ, monitoring systems
Goal: improve the detector/facility operations and data quality

Challenge: active systems = speed and efficiency are the keys!



Machine Learning Discoveries
Accelerator operations

Bayesian optimization (e.g. Gaussian Process) for efficient tuning
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(PyData 2017)

. quads
e Tuning of quadrupole magnet at LCLS T
o Probabilistic model = interpretability e l.' VAR L gL
Q J lr‘| /
. ) . g / ERARY
o GPv.s. “Hand-tuning” = x 2~3 times faster g2 A VY
m Phys. Rev. Lett. 124, 124801 A (A | — simplex
« . 9 . g i‘;"'-,v\{‘l '.'f I| l'r ap
o LCLS “hand-tuning” (not only quadrupole) time e L koo
~400 hours/year, $12M! 0 10 20 30 40 50

Courtesy of Joe Duris (ML-at-SLAC 2019) St€p number



https://orbi.uliege.be/bitstream/2268/226433/1/PyData%202017_%20Bayesian%20optimization%20with%20Scikit-Optimize.pdf
https://orbi.uliege.be/bitstream/2268/226433/1/PyData%202017_%20Bayesian%20optimization%20with%20Scikit-Optimize.pdf
https://indico.slac.stanford.edu/event/91/
https://link.aps.org/doi/10.1103/PhysRevLett.124.124801

Machine Learning Discoveries
Accelerator operations

ol AR

ST = RO!
Anomaly detection for finding false beam position monitor (BPM) signals

e Standard method (Single Value Decomposition = SVD) removes most of faulty BPM
measurements at LHC but not all!

e Isolation Forest (IF, unsupervised method using binary trees) removes the majority

e Elena Fol et al. ICPF 2019
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I
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http://accelconf.web.cern.ch/ipac2019/papers/wepgw081.pdf

Machine Learning Discoveries

Online triggers + GPUs

High data throughput GPU-based trigger system (LHCb)

| 1 1
40 data consumers 40 data consumers 40 data consumers 40 data consumers

Up to 100 sub-farms (total: up to 4000 data consumer servers)

1Tb/s (mmw

Up to 50 storage servers

Image from LHCb TDR

100G 18

100GbE

25GbE

Computing and Software for Big Science
This is a post-peer-review, pre-copyedit version of this article.

The final authenticated version is available online at: https://doi.org/10.1007/s41781-020-00039-7

Allen: A high level trigger on GPUs for LHCb

R. Aaij* - J. Albrecht - M. Belous - P. Billoir - T. Boettcher -

A. Brea Rodriguez - D. vom Bruch* . D. H. Campora Pérez* -

A. Casais Vidal - D. C. Craik - P. Fernandez Declara - L. Funke -
V. V. Gligorov - B. Jashal - N. Kazeev - D. Martinez Santos -

F. Pisani - D. Pliushchenko - S. Popov - R. Quagliani - M. Rangel -
F. Reiss - C. Sanchez Mayordomo - R. Schwemmer - M. Sokoloff -
H. Stevens - A. Ustyuzhanin - X. Vilasis Cardona - M. Williams

e arXiv:1912.09161

e 500 GPUs for collision rate @ 30 MHz = ~40 Tb/s
e Key element: data bandwidth

o FPGA (next slide) for predictable latency
16



http://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
https://arxiv.org/abs/1912.09161

Machine Learning Discoveries
Online triggers + FPGAs

ML on FPGA @ Linear Coherent Light Source

e Data rate 20 - 1200 GB/s at 1 MHz beam rate
o 10 kHz at early LCLS-II

e Pipelined MLP on FPGA = 19.3 micro-seconds latency @
77 kHz throughput, more architectures tested (see a talk
bv Audrey T. and Rvan C. at DANCE-ML 2020)

HLS4ML = (Physicists + ML)/FPGA

h I 4 I e Automatic translation of open-source ML
S I I | model to HLS + compile on FPGA
e Meant to be generic, reusable framework
17


https://indico.physics.lbl.gov/event/1192/contributions/4944/attachments/2337/3027/Therrien_Coffee_DANCE-ML2020.pdf
https://indico.physics.lbl.gov/event/1192/contributions/4944/attachments/2337/3027/Therrien_Coffee_DANCE-ML2020.pdf

Machine Learning Discoveries
Facility operation and data taking

Ingredients: accelerator, detector, DAQ, monitoring systems
Goal: improve the detector/facility operations and data quality

Challenge: active systems = speed and efficiency are the keys!

Take aways
e Probabilistic models for operations support
Efficient sampling (Bayesian optimization) for fast turn-around

[

e Anomaly detection

e Edge/Fast-ML to bring high level analysis to the detector
e Active learning: could we learn from data online?



Machine Learning Discoveries
Data analysis & physics inference

Ingredients: large, multi-modal detector big data

Goal: extract physics signal

Challenge: irregular data structure, interpretable high quality analysis




Machine Learning Discoveries
Science-domain ML
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e Data structure: sparse images, point cloud data, detector geometry

Scalable Deep Convolutional Neural Networks for Sparse, Locally Dense Liquid Argon

Time Projection Chamber Data Graph Neural Networks for Particle Reconstruction

in High Energy Physics detectors

Laura Dominé':? and Kazuhiro Terao?

(on behalf of the DeepLearnPhysics Collaboration)®

! Stanford University, Stanford, CA, 94305, USA Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Prabhat
2SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA Lawrence Beré‘:rlalg,‘“gxal Laboratory
xju@lbl.gov

Lindsey Gray, Thomas Klijnsma, Kevin Pedro, Giuseppe Cerati,
Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris, Nhan Tran
Fermi National Accelerator Laboratory
Batavia, IL

Jean-Roch Vlimant, Alexander Zlokapa, Joosep Pata, Maria Spiropulu
California Institute of Technology
Pasadena, CA

Sitong An Adam Aurisano, Jeremy Hewes
CERN, Geneva, Switzerland & University of Cincinnati
Carnegie Mellon University, Pittsburgh, PA Cincinnati, OH
Aristeidis Tsaris Kazuhiro Terao, Tracy Usher
Oak Ridge National Laboratory SLAC National Accelerator Laboratory
Oak Ridge, TN Menlo Park, CA

20




Machine Learning Discoveries

Science-domain ML
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ry: cylindrical /spherical ith
L]
e Symmetry: cylindrical/spherical detector, ML with SU(3), etc.
Published as a conference paper at ICLR 2018
Lorentz Group Equivariant Neural Network for Particle Physics

HEXACONV

gm.iel Hoogehoom', Jorn' W.T. Peters’ & Taco S. Cohen Alexander Bogatskiy ' Brandon Anderson?? Jan T. Offermann' Marwah Roussi' David W. Miller '+

niversity of Amsterdam e 256

{e.hoogeboom, j.w.t.peters, t.s.cohen}@uva.nl Risi Kondor

Max Welling

University of Amsterdam & CIFAR

m.welling@uva.nl

Published as a conference paper at ICLR 2018
Sampling using SU(N) gauge equivariant flows
Denis Boyda,!' * Gurtej Kanwar,!: T Sébastien Racaniere,? ¥ Danilo Jimenez Rezende,?:
Michael S. Albergo,® Kyle Cranmer,® Daniel C. Hackett,! and Phiala E. Shanahan' SPHERICAL CNNSs
! Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 DeepMind, London, UK 5 " — W
3 Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA 6?1ci:l’e§;i?o(l)lfe2mslerdam IE/I;;E‘O Geiger {J‘:‘l'?::rls(i?h(l;rAms[erdam
(Dated: August 13, 2020) ¥ :
Haar SU(3) Haar SU(4) 3D projection Max Welling
Haar SU(2) S University of Amsterdam & CIFAR ‘_> Extracted Feature € .
/ 06, A e s

Image
& N

Image from
Aobo Li’s talk (NPML 2020)



https://indico.slac.stanford.edu/event/377/contributions/1151/attachments/477/715/kamdl.pdf

Machine Learning Discoveries
Science-domain ML o .

STy RO
e Interpretability: hierarchical, compositional structure
|
i \(.\(‘ T
R O LTk
. - . ] . .l y
; / /

200 R 200 ‘. 200

Point Proposal Network for Reconstructing 3D Particle Endpoints with Sub-Pixel ML for end_to_end multi_stage reconstruction
Precision in Liquid Argon Time Projection Chambers
Laura Dominé,® * Pierre Cote de Soux,? Francois Drielsma,! Dae Heun Koh,* enforce lnductlve blas and make analysls Output
Ran Itay,! Qing Lin,' Kazuhiro Terao,! Ka Vang Tsang,! and Tracy L. Usher!

(on behalf of the DeepLearnPhysics Collaboration) interpretable With hierarchical/sequential eVidence

flndmgering of Electromagnetic Showers and Particle Interactions with

Scalable, Proposal-free Instance Segmentation Network for 3D Pixel Clustering and Particle
Graph Neural Networks in Liquid Argon Time Projection Chambers Data

Trajectory Reconstruction in Liquid Argon Time Projection Chambers
Dae Heun Koh,® * Pierre Cote de Soux,? Laura Dominé,® Frangois Drielsma," Frangois Drielsma,"* Qing Lin,! Pierre Cote de Soux,? Laura Dominé,® Ran Itay,'
Ran Itay,! Qing Lin,' Kazuhiro Terao,! Ka Vang Tsang,! and Tracy L. Usher? Dae Heun Koh,® Bradley J. Nelson,? Kazuhiro Terao,' Ka Vang Tsang,! and Tracy L. Usher! 22
(on behalf of the DeepLearnPhysics Collaboration) (on behalf of the DeepLearnPhysics Collaboration)



Machine Learning Discoveries
Science-domain ML
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e Interpretability: inductive bias / causal structure
ML4Jets QCD-aware NNs incorporating
s interactions in trees and graphs
. ®
. ' .
Image taken from IRIS-HEP Neural Message Passing for Jet Physics

Isaac Henrion, Johann Brehmer, Joan Bruna, Kyunghun Cho, Kyle Cranmer

The Machine Learning Landscape of Top Taggers Center for Data Science

New York University

3 g s New York, NY 10012
G. Kasieczka (Q(l)l. T. Plehn (ed)?, A. Bntterz-, K. Cran}ner“. D. Debnath?, B. M. Dll!()lls. {henrion! johann.brehmer, bruna, kyunghyun, kyle.cranmer*}enyu.edu
M. Fairbairn®, D. A. Faroughy®, W. Fedorko”, C. Gay’, L. Gouskos®, J. F. Kamenik®?,
P. T. Komiske!?, S. Leiss!, A. Lister’, S. Macaluso®?, E. M. Metodiev!?, L. Moore!!, b Gi“EfSCLOUPPe S e GSSP?I'CRocheﬂeS )
914 Rs - N . s " epartment of Computer Science partment of Computer Science
B. Nachman,'>!® K. Nordstrém'*1%, J. Pearkes”, H. Qu®, Y. Rath'®, M. Rieger'®, D. Shih?*, University of Lidge Ficole Normale Supérieure

J. M. Thompson?, and S. Varma® Belgium Paris, France
g-louppeCulg.ac.be gaspar.rochette@ens.fr }


https://iris-hep.org/projects/ml4jets.html

Machine Learning Discoveries
Science-domain ML
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e Interpretability: uncertainty quantification = probabilistic approach

o Model uncertainty and input systematic propagation

o Systematic uncertainty for mismodeling of physics

Natively designed methods: Bayesian NN, probabilistic programing, etc.

Hidden Hidden Output Hidden Hidden Output
Inputs Layer Layer PDF Inputs Layer Layer PDF

—~0 = ~—0

Standard Neural Network Bayesian Neural Network

l

l

[N

T
As\E
D]

l

24



Machine Learning Discoveries
Science-domain ML
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e Interpretability: uncertainty quantification = probabilistic approach

o Model uncertainty and input systematic propagation
o Systematic uncertainty for mismodeling of physics

Natively designed methods: Bayesian NN, probabilistic programing, etc.
... or solve inverse problem + simulator: Likelihood free inference

Monte Carlo
‘ Sampling ‘ ‘
observed what happened
Parameters Observables l in simulation
0 _— _ = j l
p(x|0) = /dzp(flr, z|0)
Prediction (simulation): e Well-understood mechanistic model
» Simulator can generate samples e Likelihood intractable: ways to approximate (e.g.
) generative model to “learn simulation”)
Inference: * Likelihood function p(x|f) is intractable

* Goal: estimator p(x|6) Slide by Kyle Cranmer (Hammer & Nails 2019) 25



https://www.dropbox.com/s/aib14yp4dpgo7qv/Kyle%20Cranmer_Hammers-Nails-2019.pdf?dl=0

Machine Learning Discoveries
Science-domain ML o .

e Learning from data: unsupervised generative models

Estimation of Orientation and Camera Parameters from Cryo-Electron

“ . . .
Learnin g Hy per bolic R epresen tations for Microscopy Images with Variational Autoencoders and Generative Adversarial
: : ”
Unsupervised 3D Segmentation Networks
talk by Joy Hsu (Al-at-SLAC seminar) "y Bk s ,
Nina Miolane Frédéric Poitevin Yee-Ting Li
Stanford University Stanford University SLAC National Accelerator
nmiclane@stanford.edu frederic.poitevinfistanford.edu ytl@slac.stanford.edu
Input Ours - Hyperbolic Ours - Euclidean
- s Susan Holmes
4 230 Stanford University
<1 TRy '”‘v"' susan@stat.stanford.edu
e A Angle-colored Defocus-colored
Latent Space Latent Space
BN Fuclidean
BN Hyperbolic
R(‘prns(fnmtinn i ‘
1 Sampled from -
wnd -
&
i Y
Softplus n QQY“ J-

Gyroplane
convolutional layer

Images from a talk by Frederic P. and Nina M. (DANCE-ML 2020) 26



https://confluence.slac.stanford.edu/display/AI/AI+Seminar?preview=/213897042/282432144/slac%20ml%20seminar.pdf#AISeminar-LearningHyperbolicRepresentationsforUnsupervised3DSegmentation
https://indico.physics.lbl.gov/event/1192/contributions/4935/

Machine Learning Discoveries
Data analysis & physics inference

Ingredients: large, multi-modal detector big data

Goal: extract physics signal

Challenge: irregular data structure, interpretable high quality analysis

Take aways
e Science-informed ML is very active frontier of development
o Domain-specific nature of data from multi-modal detectors
o Enforcing symmetry and physics laws in architecture
e Interpretability
o Enhance our knowledge: hierarchical, compositional, causal structure
o Uncertainty estimation = intersection of ML and statistical methods,,



Machine Learning Discoveries
ML for Science Experiments

. Experiment
Design (Simulator)

Physics ke Facility
Extraction - Control




Machine Learning Discoveries

ML for Science Experiments

- . Experiment . . Y
e . : Design (Simulator) % .
. | &2 s
xperiment | yf% % Building and S
; Proposal L | Installation o
e T L & g

- . Physics a Facility ;
i / s Extraction - Control :



Machine Learning Discoveries

Eco-systems around Science

it P wa “Load all the wires from this event, loop over
3 | 2 } ' each one, find all the hits over the noise
threshold, fit a gaussian to each, and save
them as hits” and get a parallelized,
. compiler-friendly hitfinder out of the box.

2019
Human-Centered
Artificial Intelligence
Symposium




Machine Learning Discoveries
Eco-systems around ML

Computing
e Exa-scale HPC: next year!
o GPU+CNN was only 8 years ago
o ML on FPGA only a few years ago
o ...today’s HPC on my laptop in 20 years?
o “ASCI White” @ LLNL
m 12.3 TFLOPS: fastest supercomputer (2002)
m Today: NVIDIA 2080Ti 14 TFLOPS
e Advancements solely by computing?
o Huge leap of performance without advancement
in algorithm expected (e.g. OpenAl GPT-3)

Lalllall

Parameters




Machine Learning Discoveries
Eco-systems around ML

Distributed Machine Learning

1) Compute gradient,

— — — — — — — —

send to Master 2) Update network
idfle ‘e idde rer\2 flde yer <
weights e hi Ifu: layer 1 hidden bl}(f\. ll!‘dl n layer 3 \
» . o . ‘ . I
RS< 8 2 AN ,;C‘\
NS0 - @ NS AW SRZANONN |

3) Send new weights to Worker
Data distributed training Model distributed training
arxiv:1712.05878 T. Kurth et al. (SuperComputing 18)

32


https://arxiv.org/abs/1712.05878
https://pasc18.pasc-conference.org

Machine Learning Discoveries
Eco-systems around ML

Evolving co-processors
e How do we design our “compute center”
e How to utilize LARGE #cores in a chip?
e How to benefit HUGE memory?

Google TPU custom ASIC

Cerebras
“Big chip”

Xilink FPGA

NVIDIA GPU



Machine Learning Discoveries
Eco-systems around ML

Eco-system

e How do we train new generations? No, how do we train ourselves?
o Courses/workshops to be standardized in a wider community

e How to best foster academic/industrial research collaboration?
o Funding support, open development with public benchmark data

e MUL-in-Science = own field? (academic degrees, career path)

Sixth Machine Learning in High Energy Physics
SietSchoclerzy USATLAS/FIRST-HEP Computing Bootcamp
[ 19.Aug 2019,0000 ~ 23 Aug 2019, 12:20 us/paciic

9 Lawrence Berkely

IAS Nitural scienct

CMS Data Analysis School 2020
Deep Learning for Physics Jan 202( - jan 202( 30 us/Central H i
o ! I/I\}S/Prmceton sponsored MLHEP School - S“des by Savannah Thais

Weeklong traini loped and d by Yandex with
coﬁ:bgrl%mrnalf?m SX?SZZ&?%EE"&"CSJ’S’;) yree CMS and ATLAS Computing Trainings (Snowmass ML group

Both had short sessions (3-4 hours) on ML, led by
Various’\/ﬁ:oups are organizing lectures
where

: experts in the experiments (Experiment focused)
researchers present to physics mmon WO rkS h (0]
groups (and vice versa) H f F efforts in Hig

HEP Software Foundation
rainings

Materials for reproducible trainings, ML
module in development (LHC focused)

Machine Learni d the Physical Deep Learning for Science School
Sciences

Discovering Symbolic Models from Deep Learning
with Inductive Biases

Mils Crammer'  AlvaroSanches-Gonsaes!  Peer Bttaga®

Webinar Series: July - September, 2020

Lawrence Berkeley National Laboratory, Berkeley, CA

Many Bivsicis dabeputndlrac il ML and Physical S Viohah o e NeurES Deep Learning for Science School CoDaS-HEP School 34
any physicists are collaborating directly wi and Physical Sciences Workshop at NeurlPS 5 day training from ML experts and discussion on 5 day advanced computing training including ~2 days on ML led

industry researchers; some hold dual (2017, 2019), resubmitted for 2020. Brings physics D e rch f’General ‘Science focused) by domain experts with physics connections (HEP focused)

appointments across physics and CS applications and physics for ML together.



https://indico.fnal.gov/event/43829/contributions/192878/attachments/132805/163466/snowmass_computing_august2020.pdf
https://indico.fnal.gov/event/43829/contributions/192878/attachments/132805/163466/snowmass_computing_august2020.pdf
https://indico.fnal.gov/event/43829/contributions/192878/attachments/132805/163466/snowmass_computing_august2020.pdf

Machine Learning Discoveries
So... Hype Cycle?

VISIBILITY

=ML facility control N
Causal/Hierarc¢hical
Strudtures

Distributed ML <4

FHA

v

C ML for physics
inference

ML for desiEn
optimizati

ML for physics
inference
... W/o uncertainty

ML trainin’g
for scientists
+career path

Generic Al

HPC on laptop

Quantum ML{:
...not in this talk

This view is on my own, no blame on those
many people I quoted in my slides!

A
45 ~5 years
A Ay
{0': ~10 years
<+ ~20 years

" Single-GPU workflow

but review here



https://arxiv.org/abs/2005.08582

THANK YOU
PAPYRUS for your attention!

Questions?

(do I have time?)

My daughter, who knows
“20 years later”?

She’ll be done being a
teen-ager, though! ;) 36




