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Background Subtraction when model is 
horribly wrong:  Lessons from MINERvA



⌫µ
r < 30 cm

•  If it weren’t, we wouldn’t be doing the experiment
•  First publications at MINERvA:  νµ and anti-νµ CCQE

How do we know the model is horribly wrong?
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•   Other early publications: pion production

Energy	near	vertex	
prefers	with	adding	
an	extra	proton	to	
25±9%	of	events,		
consistent	with	a	
mul>nucleon	
hypothesis	

Neutrino	
Charged	Pion	

GENIE	has	to	be	scaled	by	0.46	
to	agree	with	Deuterium	Data	

	
Pion	energies,	angles,	and	
overall	cross	sec>ons	do	not	

match	GENIE	Rod,Wil,McF,	EPJC	76	(2016)		 PL
B7

49
	1
30
-1
36
	(2

01
5)
.	



•  Nuclear Targets
–  Allows side by side comparisons 

between different nuclei
–  Pure C, Fe, Pb, LHe, water

•  Solid scintillator (CH) tracker
–  Tracking, particle ID,  

calorimetric energy  
measurements

–  Low visible energy  
thresholds

•  Side and downstream electromagnetic 
and hadronic calorimetry
–  Allow for event energy  

containment
•  MINOS Near Detector

–  Provides muon charge and 
momentum

MINERvA Detector
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MINERvA Events

One out of three views shown, color = energy 
νµ p→µ-Δ++, Δ++→pπ+ Candidate 

Deep Inelastic 
Scattering 
candidate 

Module	Number	

μ	candidate	

p	candidate	
π	candidate	Module number

TRACKER
ECAL

HCAL

νµ n→µ-p Candidate μ	candidate	

p	candidate	

e-	candidate	

νµ e-→ νµ e- Candidate 



•  Low energy beam: 
–  Peak around 3GeV
–  “high energy tail” not 

negligible
–  Many processes will 

contribute backgrounds to 
any analysis (except maybe 
the “Charged Currrent 
Inclusive analysis”) 

•  Medium Energy beam
–  Neutral currents will be larger 

background to νe or ν-
electron scattering 
measurements than Low 
Energy beam

MINERvA’s Neutrino Flux
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•  This low multiplicity process is a 
troublesome background for oscillation 
experiments and previous low energy data 
is confusing

•  Model independent selection and high 
statistics allows test of pion kinematics

•  1628 (770) coherent neutrino 
(antineutrino) events

Case Study:  coherent pion production
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Phys.	Rev.LeK.	113,	261802	(2014)		
and		PRD	in	preparaOon.	
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•  Signal:
–  Two final state particles (muon and 

charged pion) 
–  Small momentum transfer to the 

nucleus
–  No visible recoil

•  Event Selection:
–  Two tracks, one matched to MINOS
–  dE/dx of short track NOT proton-like
–  Low energy around the vertex

•  Backgrounds: 
–  All other pion production
–  Quasi-elastic scattering with proton-

pion confusion

Experimental Signature and Backgrounds
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•  Proton Score Discrepancy:
–  May be somewhat due to pion angle and 

momentum mismatch
–  Definitely depends on relative levels of QE 

and Resonance production
–  These plots ALREADY have non-resonant 

pion production reduced to 0.46*GENIE from 
D2 measurement Rod,Wil,McF, EPJC 76 (2016) 

•  Vertex Energy:
–  We know we don’t have the vertex energy in 

CCQE ν events right

Already see our model isn’t perfect…
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Energy	near	vertex	prefers	
with	adding	an	extra	

proton	to	25±9%	of	events,	
also	consistent	with	a	

mul>nucleon	hypothesis	

Proton Score 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ev
en

ts
 / 

0.
05

 S
co

re

0
2
4
6
8
10
12
14
16
18
20

310×
Data
Coherent
QE
Non-QE, W < 1.4
1.4 < W < 2.0
W > 2.0
Other

Selected

AνMINER
3.04E+20 POT
Untuned Background

 + A+π + -µ → + A µν

 Vertex Energy (MeV) 
0 50 100 150 200 250 300

 E
ve

nt
s 

/ 1
0 

M
eV

0

1

2

3

4

5

6

7
310×

Data
Coherent
QE
Non-QE, W < 1.4
1.4 < W < 2.0
W > 2.0
Other

Selected

AνMINER
3.04E+20 POT
Untuned Background

 + A+π + -µ → + A µν

A.	M
islivec,	FERM

ILAB-THESIS-2016-30,	PRD	in	preparaOon	



•  Muon momentum pµ is measured from reconstructed muon in 
MINOS

•  Muon angle θµ is measured from track in MINERvA
•  pion energy (Eπ) s reconstructed calorimetrically
•  Neutrino direction is parallel to the beam axis

Kinematics of Signal process
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•  Use events passing vertex energy 
cut but with 0.2<|t|<0.6GeV2

•  Check “pion” kinematics and levels

Sidebands to test background model
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So	by	scaling	the	background	levels	we	can	get	the	
pion	energy	distribuOon	to	match	in	the	sideband	
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Sideband Tuning Result by Q2
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Note:		this	is	a	new	
suppression	aIer	
weighOng	GENIE’s	
non-resonant	pion	
predicOon		by	0.46	
(ref:	EPJC	76,	2016	)		



•  There is still a mis-match, so we added a correction assuming 
that nature wants the pion angles we see in the sideband IN 
the signal region.  

•  Assumed the systematic uncertainty on the background’s 
angular distribution is the difference between the tuned and 
untuned pion angle

Pion angle in the sidebands after tuning
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•  The pion backgrounds were  
tuned AFTER a cut on the  
vertex energy. 

•  The CCQE background that  
survives that cut depends on  
the model you assume for  
the CCQE process

•  Initial expectation was that  
25% of the CCQE events had an extra proton with a 
momentum between 0 and 225MeV

•  Re-extract the cross section after adding the additional 
proton to the CCQE sample, apply as a systematic 
uncertainty

Vertex Energy Uncertainty
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PRL	111	(2013)	



•  Evaluate δ(background prediction) by 
marginalizing over systematic uncertainties

•  Additional “Sideband model” shows up 
differently in different observables

Uncertainty on Background Modeling
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•  Adding extra vertex energy and modifying the pion 
background kinematics as systematics is something 
MINERvA does for many measurements
–  Neutrino-electron scattering
–  Electron neutrino CCQE measurement
–  CCQE in the nuclear targets  (there it’s the signal, not the 

background)
•  As we start to develop better models, the background 

prediction process also changes
–  Add “2p2h events” instead of just adding extra protons
–  Add different sources of “2p2h” instead of just turningn on or off 

2p2h  (nn, np, pp, or just extra QE contribution) 
–  Stop using difference between GENIE and MINERvA result as a 

systematic uncertainty, use uncertainty ON MINERvA result

Lessons learned from Coherent Pions
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•  Stay tuned, a long PRD is in preparation with these results…

Neutrino Coherent Pion Results
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•  Event selection:
–  Identify an EM-like shower

•  Energy deposit at track end
•  “Width” of the track
•  Average dE/dx of entire track

–  Remove non-CCQE events 
•  No Michel electrons
•  Anything not within a  

7.5o e- cone  
or 30cm of vertex is  
called “extra energy”,  
cut on Ψ= E(extra)/E(cone)

–  Remove photons by early dE/dx cut 

Next example: νe CCQE 
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•  Several different backgrounds persist

Events after e- ID and “extra energy” cut
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Graphics	from
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Find sidebands to constrain backgrounds
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Signal and Sideband Distributions
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•  Fit the kinematic 
distributions in the 
sidebands for 
overall 
normalizations for 3 
scale factors
–  0.90 for “other νe”, 

1.11 of “Other NC 
π0” and “CC νµ π0”

•  But even after 
constraining model 
with the 
sidebands…

J.	WolcoK,	FERMILAB-THESIS-2015-26	



Need to add:  Diffractive π0 Production
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Analogous	to	NC	coherent	producOon.		PotenOal	background	
for	νe	appearance.		Not	in	default	generator	models.	

Candidate NC 
diffractive event 

Probable recoil from proton 

Observed as 
excess EM 
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region of front 
dE/dx 

”,	Phys.	Rev.	LeK.	117,	111801	(2016)	
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•  For νe CCQE 
result:   
sideband 
model  
not a big factor

•  Excess 
process is  
a small 
contribution

•  FSI still most 
important 
interaction 
systematic on 
CCQE  

Systematic Uncertainties on Backgrounds

6/24/17 Deborah Harris | Predicting Backgrounds at MINERvA22

J.	WolcoK,	FERMILAB-THESIS-2015-26	



•  The more rare the process, the more different channels the 
backgrounds may have, some of which you didn’t know 
existed

•  The more channels you worry about, the more sidebands you 
need to constrain those backgrounds

•  Award for most (confusing) sidebands:  neutrino-electron 
scattering analysis

Lessons learned from coherent and  
νe CCQE analyses:  
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•  Well-predicted cross section, useful for flux constraint
•  Simple final state:  single electron in direction of neutrino 

beam
•  Can isolate electrons from dE/dx at beginning of the shower
•  Observables:  

–  electron energy (Ee) and angle with respect to beam (θ)
–  From kinematics, know that Eeθ2 should be me

2/2
–  dE/dx at beginning of shower

•  Cut on all energy outside of electron cone to get rid of 
backgrounds

•  Lots of possible sidebands to pick

Neutrino-electron Scattering

6/24/17 Deborah Harris | Predicting Backgrounds at MINERvA24

νe→ νe candidate 
event  

Phys.	Rev.	D	93,	112007	(2016)	



•  This is after background tuning, but you see how many 
backgrounds contribute

•  Tuning is done as function of OTHER variables

ν-e candidates after Electron ID cuts 
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•  Sideband (b) is then broken up into 3 regions to determine 3 overall 
normalization factors 
–  Minimum dE/dx to prevent vertex energy mismodeling

•  Remove cut on shower end transverse position and fiducial track length to 
get full statistical power of the sideband

Sideband Definitions for ν-e scattering
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•  Shower End Transverse position distributions for Eθ2>0.05GeVrad2

Sideband Distributions before and after tuning
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•  Interaction Model is important—but uncertainties were reduced from 
sideband tuning

•  CCQE shape uncertainty is called out separately
–  Need to extrapolate from  

high Eθ2 to low Eθ2, similar to  
extrapolating from high Q2  
to low Q2

–  Took as the systematic  
uncertainty the entire  
difference between  
GENIE and MINERvA  
measurement

Systematic Uncertainties on ν-e scattering
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•  The better foundation you have to make models for all the 
different processes you have in your data, the better your 
background predictions will be

•  Still will need sidebands and clever strategies to really test 
these background predictions

•  MINERvA’s medium energy data set has lots more statistics, 
so there are lots more background techniques we can 
explore

•  Future focus on nuclear targets means more background 
subtraction challenges: 
–  Need to subtract non-target backgrounds AND specific channel 

backgrounds

Conclusions
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