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Introduction from the oscillation analysis perspective
Common analysis methods

Sermon on model independent measurements
Personal perspectives on alternate analysis ideas:
1. Alternate approach to the issue of unfolding
2. Providing maximal information

3. Generator-free MC?
4. Making best use of complex data

Conclusion
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What does OA
need?

ePredictions:
eEvent rates
ofinal state particle kinematics

eNeed to accurately calculate inferred (physics)
variables from our observed variables

oFor oscillations, need to E,
odifferent ways to do this
e A/l methods need good xsecs!
eall beams are relatively wideband
eall detectors are relatively poor at
neutron detection

eNeed to accurately predict background
contamination

) Need to understand neutrino-nucleus cross-
sections precisely

m»Need good models

Imperial College
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http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+EPRINT+HEP-EX/0606032

Xsecs and Oscillations

'CrOSS_ section models Us_ed by Systematic uncertainties reported by the
experiments do not describe world’s most sensitive ve appearance
observations by: K2K, MiniBooNE, experiments vs. time

SciBooNE, Argoneut, MINERVA,

®| eads to inflation of systematic

uncertainties MiniBooNE 123 17 6
o (2007) | |
eModel dependence often injected
into data analysis T2K (2012) 7.5 10.3
e|nferred variables
" .
eEnergy, Q¢ reconstruction T2K (2016) 49, 6%

e Background subtraction

*Using disprepant models _W”_I How are we improving the errors?
a|wayS g|Ve SUCh Uncel’talntles Usjng better models!

How are we improving models?

|
®Need to use better models! Tuning with better data!

Imperial College Morgan O.
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Method 1: template fit

Compare data to MC, within context of a model, using templates.

| = bin of xsec variable
f Np?“edP fi = normalisation factor
1 : 1 Nired = predicted # of events
o: = . < O_p’red > — L P; = purity
(/ (/ 1 .
T@ , ei = efficiency
EZ 1 T = number of nuclear targets

@; = neutrino flux per bin

Other variants are used, for example the
T2K off-axis CCQE and on-axis E, analysis

MC template (MRD-stop)

RGCOHStrUCted PM VS 6 Reconstructed Pu vs. 6

10 Reconstructed Pu vs. 8
<

2 2
Templatescan p, 4 B P, 1:-0.5 GeV 5-0.75 GeV
be produced in 1.6 o0
observed o i |
1.2 j
dynamical 08 0o 0O 10 20 30 40 50 60 70 80 90 0 00 10 20 30 40 50 60 70 80 90 0
variables, 0.6 " Pu #075-1.0Gev  J§* #1.0-1.25 GeV
different from 0.4 I5° - "
: 0.2
Xsec variable. o

cea b b b b b P b b i
Cb 10 20 30 40 50 60 70 80 90 °

e 10 20 30 40 50 60 70 80 90 o

C IIIIIIIII 0
0 10 20 30 40 50 60 70 80 90
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Method 1: template fit

Fit for values of fi that minimise some GoF parameter (x?, likelihood), and
use MC to infer the measured value of cross section.

Nbins
2 b d tat\— b d
— Z (qus_ijfre )(Vsys_|_vsa,)jk( N obs kapre )
&
’ Uncertainties: estimated with fake data studies
by repeating the template fit with MC variants.

=6 2'5: | Rate norrﬁallzed to NUANCE

© s Rate normahzed to NEUT : - - -

S ol e i : Advantage: This method is especially useful for

VG SR W S _ _ _ _

S % B B vChuceror measuring cross sections as functions of inferred
= -_l— [7777] MG xsec error Imeégrated variables, like the input variable E, or internal
% 1.5 ;_l:i_gt{j_i — variable Q?, and for parameter tuning.
E e et OSSR

o 1%%?213’“&”‘%:“"’ f‘§§§§: Drawback: This method is susceptible to model
S I o bias. If your MC model differs from nature in
m 0.5_ ....................................................................................................................................... Some important Way, you Can eaSin infer the

wrong answer!

Imperial College SciBooNE Morgan O.
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Method 2: Matrix unfolding

eCalculate cross section directly from

number of events

N >2; Uij(N7** — Bj)

€

1. Apply BG/purity correction

2. Unfold to correct detector smearing

* Different methods available

3. Apply efficiency correction

4. Normalise with neutrino flux and
number of nuclear targets to get cross

section

= Result is flux averaged differential

Cross section

Imperial College T 2 62\

State of the Nu-tion, 2017 06 24

j = bin of reconstructed variable
i = bin of corrected (“true”) variable
Nj°bs = observed # of events
Bj = background events
(could use purity correction n; )

Ui = unfolding matrix
ei = efficiency

Unfolding Matrix for CC selection (NEUT)

True bin

0 5 10 15 20 0

Reconstructed bin
1234 1234 1234 1234 12 3 4 coso,

1 2 3 47 S pu (MeV/

A

do _ 1 Nz
de, TP, Ax;

T = number of nuclear targets

@, = total integrated neutrino flux
Axi = bin width

Morgan O.
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Method 2: Matrix unfolding

N ¢ covariance matrix
var

S nom S nom

Vil = — (o, — 0" ) o] — ™)

True bins

0.015

e Use MC variants to create
covariance matrix

- -0.01

0.005
eNeutrino flux is (usually) just a

normalisation error

True bins

e\We do, of course, propagate

All except flux covariance matrix

the full shape covariance ! | o
eVery useful to separate outthe & @ = oo
flux error oo

. | TR
=) Potential for reducing model T e ]
. . ] E . ‘ 1£5-0.02
dependence with this method 5____,1 __________ I,_ _____ e
. . . i E E |&8-0.04
e But, issues with unsmearing... o me B ol m ]

o True bins o
mperial College murgan O.
onden I 2 State of the Nu-tion, 2017 06 24 Wasc"9°



Model |

or, how do | get yc¢

Imperial College . Morgan O.
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What does model dependence mean?

Absolute flux-averaged
differential cross section formula

eDistinguish between o model U;; :unsmearing matrix

and detector model \ N;°Ps : data
e Any MC-derived quantity is, of Obs/
course, model-dependent N Zj Uij(Nj — Bj)

e Restricting corrections ‘ €; /
(unsmearing, BGs, efficiencies) _— b, : background
to detector MC quantities—not ¢; :efficiency :
cross section processes—Is
probably the best we can do do 1 N,

o This is why we should publish de,  T®, Az,
final state particle cross
sections, in addition to process / \
measurements, etc. T :integrated

target number ® :integrated v-flux

rial College Morgan
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Isitso bad?

(I)Vnear(E).O-near(E).enear(E) = (I)Vfar(E,Q,Am2’5).0far(E).8far(E)
Interaction models are useful:

e Relate final state particles to neutrino energy, estimate
systematic errors.

e (Cannot do neutrino oscillation analysis without a model!

e However, error cancellation only works if the model matches
Nature!

Ulrich Mosel’s observation, Nulnt11:

e Theorist's paradigm: “A good generator MC does not have to fit
the data, provided its model is correct’

e Experimentalist’'s paradigm: “A good generator MC does not
have to be correct, provided it fits the data”

State of the Nu-tion, 2017 06 24

Morgan O.
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Can we do it differently?

Insanity is repeating the same mistakes and expecting different results.

e \What do we really want to
do with a cross section
measurement?

e |et's provide enough info
for later analysts to
cleanly use data with a
new model.

= \/\e are creating crucibles
for proving models with

" I would do some things differently if | had a chance

preCISG d ata . to do it all over again. '

Imperial College Morgan O.
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https://en.wikiquote.org/wiki/Narcotics_Anonymous

What do we (experimenters) do?

(A recap of the earlier section of this talk...)

® TJo get better models, experimenters need theorists to
use our data effectively

® |t’s in our best interest to make that as easy and
effective as possible

e Typically, our goal is to produce cross section
measurements

® \We use the detector MC to model the efficiency and
smearing,

® \Ne then correct those effects with unfolding
matrices and efficiency functions

Imperial College Morgan O.
State of the Nu-tion, 2017 06 24
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INTERACTIONS
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Best way to present data?

e \We could alternatively provide theorists with the tools to
analyze our data the way that we do

o \Ne don’t use tools like NUISANCE for internal data
fits!

e Usually: numbers of events in bins of py, 6,

e |t would not be productive to just dump detector MC
code in a theorist's home directory!

e But we could provide efficiency functions (including
smearing) with systematics and our measured data

® The efficiency function could be applied to inclusive
simulated data samples, allowing theorists to
perform analysis the way we do

® (Obviously need to provide neutrino fluxes, too, but
we already do that.

State of the Nu-tion, 2017 06 24

Imperial College Morgan O.
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(maybenots@Crazy |dea 1

® |nternal data analysts use uncorrected data to
perform parameters fits.

® \WNe use detector MC to naturally handle
efficiencies and smearing,

® Dby comparing smeared MC samples after cuts
to data after cuts.

o We use MC samples/reweighting techniques to
adjust MC until it matches data.

® Why not publish uncorrected data along with
appropriate smearing and efficiency functions?

e “Should unfolded histograms be used to test hypotheses?” by
Cousins, May, Sun. arXiv:1607.07038 [physics.data-an]

Imperial College Morgan O.

State of the Nu-tion, 2017 06 24 i


https://inspirehep.net/search?p=find+eprint+1607.07038

MODEL A

@
@
MODEL B
o
e}

MODEL T

Imperial College

ACCEPTANCE/
SMEARING TOOL

State of the Nu-tion, 2017 06 24
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This Is various ways
of describing Nature

MODEL A

Y,

MODEL B

We'd like to choose
the best one!

IIIIPGI ai vvllvav

This is our best
guess at describing
our apparatus

ACCEPTANCE/
SMEARING TOOL

Only we, the experimenters, can
provide this middle step,

which is a crucial part of
understanding the data—our
true contribution to the world.

State of the Nu-tion, 2017 06 24
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Didn't we just hear this?

Let’s try something smart T2K

Since simple won’t work...

Truth Space Reco Space

Measured
>

True events —t+3» Detector-¥» Analysis distributions

Theory

> Expectation
predictions

values

——>» Response matrix

* Transition from truth to reco space and back is not symmetric
— Differences in truth space are smeared out in reco space

* It is hard to find the original truth distribution from a given reco distribution
* It is easy to get the smeared reco distribution from a given truth distribution
* Instead of bringing reco data to truth space, bring model predictions to reco space

* Use response matrix to handle smearing and efficiency
— Contains all information about the detector, reconstruction and event selection

RWTH

xsec workshop The Likelihood Machine —
L. Koch . . ) lll. Physikalisches
3/16 Ill. Physikalisches Institut B, RWTH Aachen University Institut B

e |f this sounds familiar, it's because Lukas is already doing
it.

® You can too!

® Be a pioneer like Lukas!

State of the Nu-tion, 2017 06 24

Imperial College Morgan O.
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® You can too!

® Be a pioneer like Lukas!

State of the Nu-tion, 2017 06 24
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(maybenots@Crazy |dea 2

® Apply efficiency/smearing corrections to individual
events.

® Publish an ntuple of events: reconstructed final
state particles.

e Each event comes with a cross-section weight
derived with POT numbers, flux & detector MC.

e Allows one to make a plot giving cross sections
instead of number of events.

= Gijves unprecedented knowledge to future analysers
since it would allow analysis of new variables

Imperial College

Morgan O.
State of the Nu-tion, 2017 06 24
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INTERACTIONS DATA

Vertex

(X,y,2)
mu—

(PX,py,pz) MeV/c

Vertex
(X,¥,2)
Mu—
(PXx,py,pz) MeV/c

pi+
(PX,py,pz) MeV/c

NEUTRINOS
@DETECTOR

Vertex

(X,Y,2)
mMu—

(Px,py.pz) MeV/c
p+

(Px,py,pz) MeV/c
pi0

(Px,py.pz) MeV/c

Could include
experts-only info too,
like PID pulls

Imperial College Morgan O.
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i data.nasa.gov O

NASA

© Explore by Category

The Dev Portal

Developer Resources.

Get Started

The Developers Portal has documentation on our
Application Programming Interface (APIs), code
snippets for building apps, visualizations, and
more. Click below to get started with our

Phystat-nu F... nttps://inaic... nttps://indic...

Welcome To

NASAS DATA PORTAL

This site is a continually growing catalog of publicly
Available NASA Datasets, APIs, Visualizations, and More.

Home About Data Catalog Developer Resources

Featlired % Dataset

NASA releases data to the public

State of the Nu-tion, 2017 06 24

Mars Photos and Asteroids

are just a GET request away
Featured ¥ Dataset The NASA Open Data team is pleased to

announce the availability of two new APl Web

NASA C |OUd Data Services: Near Earth Objects ...

Suggest a Dataset

Morgan O.
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- Crazy idea 3

Generator-free analysis

Can we do an xsec analysis without using a generator at
all?

In principle, can generate events flat in all phase space
® “particle blizzard™ for efficiencies and purities

Still need to turn flat phase space into a model for PID,
systematic studies, etc.

This job is usually done by the generator, but can a
completely data-driven method be developed?

* This needs a good name. “Particle bomb” is not a good choice.

State of the Nu-tion, 2017 06 24

Morgan O.
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Global PID algorithm — (L
Need for Priors

« We consider 4 hypotheses for particle id

- Electron, pion, kaon, and proton (denoted by H)

- Initially we do not distinguish by charge since none of the pid measurements (dE/dx, ToF,
Ckov, RICH; denoted by x) depend on the charge of the particle.

« We employ the maximum likelihood technique to determine the spectra of
each particle type in data. However, the likelihnood that a measurement is
that of (e.g.) a pion or kaon depends not only on the individual measurement
but also on the total number of pions and kaons in the sample.

No Priors: Kaon hypothesis more likely than pion Priors: Pions more abundant than kaons, hence pion more likely
- 1.6 - 1.6
] - ] -
2 F 2 F
= 14 Z 14
= - = -
3 o 3 o
1.2— 12—
1 g 11— g
0.8 o 0.8 o
0.6— 0.6
0.4 A~ 0.4}
B /’/ \'\\ B
0.2— 4 N 0.2— T
n__lllr|_||1| _|J..s_-.|---»€'n'r#"r-—ul-||| rlli!lllll..l"'l' TR R n__lllrl_llll ol ._,_,___I..-,I',M,.. rll111.ll.l~'l= PRI A
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
PID quantity (dE/dx, ToF, etc.) PID quantity (dE/dx, ToF, etc.)
~ZG8E | WICHITA STATE
July 9, 2010 Holger Meyer @SU Unversiny 47

http://theory.fnal.gov/jetp/talks/JETP9Jul2010.pdf

Imperial College Morgan O.
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Imperial College

Bayes' theorem — Global PID

formalism

The joint probability P(H,x) can be written as (H = e,n,K,p; x = dE/dx, ToF, r
P(H,x)=P(x|H)P(H)

where P(H) is the probability of a particular hypothesis. This is what we are trying to determine. These
equations are for a given momentum. We have suppressed the momentum dependence for simplicity.

By Bayes' theorem P(H,x)=P(H|x)P(x)

This leads to P<H|x>:ng|<i[|)[5)g{<)[_[)

RICH"")

We determine P(H) iteratively. Assume that all hypotheses are equally likely initially, i.e. P(H) = V4
since there are 4 hypotheses (e/n/K/p). For each track, we then determine the posterior probability
P(H|x) which is used to weight the track for each hypothesis.

%H P(H|x)=1 preserves unitarity

The resulting P(H) is used for the next iteration, till convergence.

The aim is not to determine whether each particle is definitely one type or the other but to determine
the maximum likelihood momentum functions for each hypothesis. Each particle enters all hypotheses
plots with its appropriate hypothesis dependent weight.

We treat MC and data as two separate experiments, each with slightly different behavior. We test the
algorithm on the MC, since we know the answer. — (Movie)

July 9, 2010 Holger Meyer @S e 48

http://theory.fnal.gov/jetp/talks/JETP9Jul2010.pdf

State of the Nu-tion, 2017 06 24
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~-Crazy idea 4

e \What's the best way to use all the information?
¢ High dimensionality presents challenges

e Example: to nail down 2p2h interactions, we’d like to
measure p,0 of 1y, 1y1p, and 1u2p events.

e that's up to 6 variables, with fewer events in the higher
multiplicity samples

® binning those samples will remove lots of information

e \Why publish event-by-event if you just have to bin
the data later?

= | et’s enjoy un-binned analysis methods!

Imperial College Morgan O.
State of the Nu-tion, 2017 06 24
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~-Crazy idea 4

M. Williams, “How good are your fits?” arXiv:1006.3019v2 [hep-ex]

® There are many ways to calculate goodness-of-fit
parameters in un-binned analyses

® An interesting class is point to point dissimilarity methods

® Dbased on measuring the absolute distance between the
points in two sample distributions

e similar to electrostatic energy calculation

® |etxdbe your data and x™ be your MC, then an
interesting GOF test statistic is:

wa—x\)

d L,j>1 NdMmc

(Can experiment with different forms of W)

Imperial College Morgan O.
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https://arxiv.org/abs/1006.3019

This Is your multidimensional data

Imperial College Morgan O.
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o A .
# oF
oA .

>
o
A
. e
D L) P S
— — X — X Xy —
ng i,j>illj T nanme 43 Vi

Calculate T for your data and MC points

State of the Nu-tion, 2017 06 24

—+- data, xd

® MC model A, xmcA

i)

J

Morgan O.
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7+¢ data, xd

® MC model B, xmcB

1 nd sNmc

—d C
Z W (|X; —)_5'}1 )
)]
This MC model is not as close to the data, resulting in larger T

1 &
r=—=Y) W(Iffl—)—cﬂ)

Ngij>i NdMmc

Can be used with weighting techniques for MC?
Can be implemented into a regression algorithm?

Imperial College Morgan O.
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What to take away...

e |f you are already working on a cross-section analysis...
® | do not want to imply what you are doing is wrong!

e Don’t stop your work—keep going, write a paper, implement
your data release in NUISANCE!

e |f you want to fit Q%?qe data for Ma (or to measure Fa), then go
for it!

e But let's do the model independent stuff too!

® |f you are looking to start an analysis now, why not try one of
these crazy ideas”?

Imperial College Morgan O.
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Summary

® Measuring cross sections is a tricky business
o \We've been discussing these analysis issues for a while now...

® |[t's time for us to learn our own lessons!

® Having used external data sets to constrain cross section
models, we’ve learned a lot about what not to do

e The world has lots of good data analysis ideas

® |et'stry some!

“Human progress has always been driven by
a sense of adventure and unconventional
thinking.”

—Andre Geim, 2010 Nobel Prize for Physics

Imperial College Morgan O.
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Best way to publish data”

® Measured quantities vs inferred quantities:

® How to interpret unfolded data? Generator
dependencies?

e (Can we provide the tools to allow theorists to fit our
data in the same way we do”?

e QOther fields publish data in different (and creative)
ways—maybe we should consider some of these.

Morgan O.
State of the Nu-tion, 2017 06 24 .
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Show the whole story

e All neutrino data samples are rife with backgrounds.

e MiniBooNE: CCQE <= CC1a* <= CC1n0 —?
NC 10

e butreally: yu+p <= utat < utal —=? 70

e Knowing what we do (e.g. about 2p2h from e-A
experiments), we cannot have confidence in one
sample without seeing all the others.

e \We've already learned that seeing each of them
isn’t enough!

e For example, to extract Ma from neutrino data:

e Requires nuclear model & background predictions
match Nature.

® Predicated on assumption that Fa is a dipole.
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Full disclosure: 've unfolded before,
but why repeat my mistakes?

Energy Scale Uncertainty

Energy scale uncertainty comes from difference performance between
CCPiP and CCQE neutrino energy reconstruction.

e CCQE e CCPi

05 1 15 2 25 3 O 05 T s 2 Tas 3
EnuMC vs. EnuQE, after CCQE cuts (CCQE only)

EnuMC vs. EnuQE, after CCPIP cuts (CCPIP only)

mor Bar = RMS - .

' Srroe Bar = RMS/sqN)

T 05 15 2 25 3 15 2 25 3
EnuQE bin center (GeV) EnuQE bin center (GeV)

M.O. Wascko, LSU Nulnt05 ptember, 2005

n
w

L
L

Mean Enuus (GeV)
_ Mean Enuus (GeV)

<
»

oQ

Full full disclosure: I inverted the matrix—no feaux-Bayesian mumbo jumbo

Imperial College

Morgan O.
London
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http://www-boone.fnal.gov/slides-talks/conf-talk/wascko/wascko_nuint05_1_20050926.pdf

