MICROBOONE AS A LABORATORY FOR STUDYING V + AR INTERACTIONS

Joel Mousseau
University of Michigan
State of the Nu-tion workshop
Toronto, ON
6/23/17

MicroBooNE: Hunting an Excess and More

- MicroBooNE: primarily designed to confirm / refute the MiniBooNE excess of neutrino events at low energy (200 475 MeV).
- e⁻ / ɣ separation drives choice of detector technology, leads to liquid argon time projection chamber (LAr TPC).
- MicroBooNE is excited to contribute to the field of cross-sections:
 - Provide vital studies of interaction physics for future, larger LAr experiments (DUNE).
 - Contribute to the development of analysis tools for the Fermilab Short Baseline Program, which also uses LAr TPCs.

MicroBooNE's Place in the SBN Program

MicroBooNE

SBND

Argon is Interesting in it's Own Right!

- Independent of any future or current running projects, argon is an interesting nucleus to study in its own right!
- Argon is heavy, (A = 40). Compare that to Iron (A = 56) and Carbon (A = 12).
- As a result, Argon is a great nucleus for studying all the A dependent nuclear effects we
 like to talk about (MEC, TEM, FSI).

We tend to think of large A detectors as sampling calorimeters, such as MINOS on the right...

...TPCs give us the ability to study these interactions in a tracking-like detector (albeit one with many cosmic tracks).

BNB Flux

- MicroBooNE see approximately the same flux as MiniBooNE (same beamline, similar location).
- Primarily v_{μ} with some contribution of intrinsic v_{e} . Anti-neutrino mode has a significant wrong-sign contribution.
- MicroBooNE does not plan to take anti-neutrino data pre-SBN era.
- 0-3 GeV energy range gives us good coverage of QE, MEC and RES events.

BNB Flux Uncertainties

Channel	Flux Uncertainty	Ref
ν _μ CCQE	8.66% (norm.)	PRD81 2010
CC π⁺	9.2% (norm. + shape)	PRD83 2011
CC π ⁰	10.5% (norm + shape)	PRD83 2011

- MicroBooNE is currently using MiniBooNE's latest flux calculation / uncertainties.
- It is a priority of the experiment to re-evaluate the flux and improve these uncertainties, new flux calculation is on the way.

Operation of a LAr TPC

For more details, see our detector paper: 2017 JINST 12 P02017

What we Gain From TPCs

Beautiful Events!

Particle ID based on dE/dx!

Phys.Rev. D95 (2017) no.7, 072005

- LAr TPCs are very good at and tracking and particle identification based on charge deposited.
- BUT:
 - You have a complicated signal (charge on a wire.
 - You have a complicated detector.
 - You have a heavy nucleus (Ar) which is not modeled well.
- Taken together, it implies we should be reporting results in detector variables (track length, muon momentum, etc.)

LAr TPC Reconstruction: Deconvolution

- What you get from your wires is a waveform in t space, and remember you have the entire 5 ms waveform...
- This is in stark contrast to tracking style detectors, where you have a digitized charge in some small ns sized time bin.
- Or a Cherenkov detector which give a spatial distribution of charge on PMTs.

LAr TPC Reconstruction: Flash Matching

- To beat back cosmic ray backgrounds, attempt to match TPC tracks to "flashes" in the PMTs.
- Estimate light yields of hits in the TPC, and match that to deposits within the PMTs.
- Interesting events (events with a long muon) typically deposit above 50 PE (bottom).
- Mitigating cosmic rays in time within the long drift window is challenging, flash-matching is our best (but not sole) technique.

Working to improve the MC optical model, should improve cosmic mitigation

Cosmic Backgrounds

Abridged Cut Table of CC 1 μ + X (inclusive)

Cut	Survival Fraction (Overall / Relative)	
> 1 Flash with > 50 PE	25%/25%	
Candidate vertex in FV	55%/14%	
Flash matched to longest track	29%/4.0%	
Track Containment	49%/1.9%	

"The healthiest thing we can do is ignore this and pretend it doesn't exist."

- Backgrounds from cosmic rays are a serious concern for surface TPCs.
- Mitigated by cosmic detectors, and PMT flash matching.
 However MicroBooNE has found some cutting on reconstruction level quantities is necessary.
- This leads to some model dependence on your signal definition, as well as a complicated acceptance map and low detector efficiency.

Hierarchical Reconstruction Path

Pandora Reconstruction

- Done in two passes, including a cosmic tuned reconstruction and a neutrino tuned reco. pass.
- Pandora spatially groups hits into clusters, tracks and showers.
- Neutrino pass includes vertex finding, track/shower discrimination and PID.
- Track containment and direction is used to determine if a track is cosmogenic in nature.

Wire Cell

- Fully 3D reconstruction; uses linear algebra (tomography) to solve for intersections of wires.
- Wirecell incorporates its' own deconvolution, one needs to deconvolve multiple signals within a given cell.
- Much of the PID and kinematic reconstruction would follow from the Pandora chain, however the base tracks and showers are manifestly 3D objects.
- Actively being explored by MicroBooNE.

Convolutional Neural Networks

- Unlike Pandora, where one considers discrete hits correlated in different views, CNN/Deep Learning considers the entire TPC image.
- Consists of "training" a set of nodes (neurons) to known images; the network picks up on image features which one can use to build classifiers.

uBoone DL Publication: JINST 12, P03011 (2017)

- Train your network to recognize regions of interest, beats down cosmic backgrounds.
- Almost by design, CNN is very good at dividing events by particle type and multiplicity (1 proton + 1 lepton, 1 proton₁₅ + 2 gammas).

Reconstruction to Analysis

Pandora / Track Based:

 Ammenable to topological variables (track length, angle, etc). PID is possible, but needs to be based on these underlying topologies.

MicroBooNE Pubilc Note 1006

Deep Learning Based:

Very good at classifying broad event types; (1 μ + 1 p, 1 e + 1 p). There is a trade-off in that you lose some information as to what goes into these classifiers.

JINST 12, P03011 (2017)

Wirecell / Tomography Based:

 Hybrid where you consider the TPC image in all three dimensions, but still retain the underlying pixel information. http://lar.bnl.gov/ wire-cell/

Reconstruction to Analysis

Pandora

WireCell

Deep Learning / CNN

Analysis Engine

How do we report results? Do we unfold? Efficiency Correction?

6/23/17

MicroBooNE Public Note 1008

What do we

normalize to?

Each strategy

different model

dependencies!

involves

introducing

Example: CC Inclusive

- CC Inclusive is a pandora based analysis where we search for at least one muon.
- Due to significant cosmic contamination, number of other cuts are imposed to improve purity.
- Boils down to a "contained" and "uncontained" sample.

 Strict requirements on containment (longest track must be contained)

- Looser requirements on containment (for multitrack events).
- Cuts events with a Michel tag, likely a stopping cosmic ray.

Example: CC Inclusive

- Look into *tracking* type variables: track length, cos(θ).
- How useful are these distributions relative to "higher level" quantities like E_v or Q², which contain significant model dependence?
- Advantage to these tracking variables is it is natively how our complicated efficiency and acceptance is calculated.

Example: CC Multiplicity

- E_v or Q², these are hard. What if we measured something nice and easy like track multiplicity?
- Model builders can predict multiplicity, it's something we natively measure and something which we (generally) agree on a definition.
- Of course, real life is always more complicated:
 - How do we deal with neutral particles?
 - What about charged particles below our detection threshold?
 - What about how our acceptance changes as a function of multiplicity?
- In principal this is all solvable, but it affects how you do your measurement.

Unfolding

- Unsmearing detector effects is a painful process one would like to avoid.
- Should MicroBooNE move to a model where we unfold only when we think an unfolded distribution adds value to the work being presented?
 - Otherwise, publishing the smearing matrix.
- Moving toward unfolding our charged current multiplicity distributions.
- ... But an E_µ distribution from the inclusive sample does not seem to add much value.

Conclusions

- Studying neutrino interactions in liquid Argon is an important, and quite frankly interesting endeavor.
 - Try thinking of it as liquid iron. Really cold, non-conductive liquid iron.
- MicroBooNE is leading the charge on this effort, and has already made important contributions:
 - Developing advanced cosmic ray mitigation techniques.
 - Pushing forward with traditional pixel and tracking reconstruction.
 - CNN and tomography approach to reconstructing entire detector images.
- The nature of our detector, and reconstruction leads us toward releasing results in detector variables, with suitable smearing matrices and efficiency corrections.
- This is already underway, our cross-section analyses will prove to be very interesting once finalized.
- There is a lot to learn (and be learned) from LAr TPCs.

Thank you for Listening!

Backup

Multiple Coulomb Scattering

- Method for measuring the momentum of exiting muons based on the muons scattering.
- RMS of scattering defined by Highland formula:

$$\sigma_o^{\rm HL} = \frac{S_2}{p\beta c} z \sqrt{\frac{\ell}{X_0}} \left[1 + \epsilon \times \ln\left(\frac{\ell}{X_0}\right) \right],$$

- Validated against MC and has been retuned for liquid Argon.
- Powerful way for MicroBooNE to measure muon momentum, a very fundamental quantity.

MicroBooNE Public Notes

May be found at this URL: http://wwwmicroboone.fnal.gov/public ations/publicnotes/

Selection I Full Cut Table

Cut	Events	Survival Fraction
All Events	547000	100%
> 1 Flash with > 50 PE	136000	25%/25%
> 1 Track within 5 cm of vertex	135000	99%/25%
Candidate vertex in FV	75000	55%/14%
Flash matched to longest track	22000	29%/4.0%
Track Containment	10000	49%/1.9%
Tack length > 75 cm	3000	30%/0.6%

CCInclusive Cuts

MicroBooNE Run Plan

- MicroBooNE approved for 6.6e20 POT in pre-SBN era.
- Collected 6.3e20 so far, will likely acquire our full approved data set by the 2017 Fermilab summer shutdown.
- Plan to continue running in neutrino mode after the shutdown.