

Early Days of TRIUMF Contributions of Gerardo Dutto

Ewart Blackmore

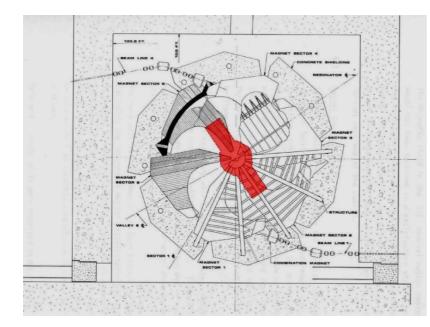
Ewart Blackmore: Joined TRIUMF in September 1969

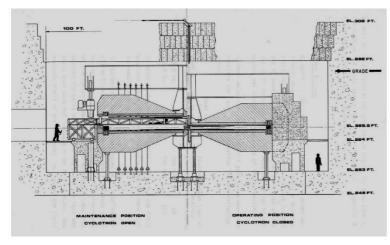
PhD 1967 UBC in Nuclear Physics – Supervisor John Warren

Accelerator experience: UBC Van de Graaff

PDF (1967-69) Rutherford Laboratory in Particle Physics H-minus EM stripping cross section in Magnetic Field (1968)

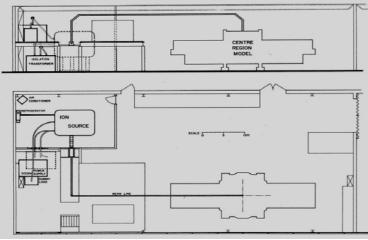
Gerardo Dutto: Joined TRIUMF in December 1970


PhD 1971 University Rome – Supervisor Francesco Resmini


Accelerator experience: Milan 45 MeV H-minus cyclotron

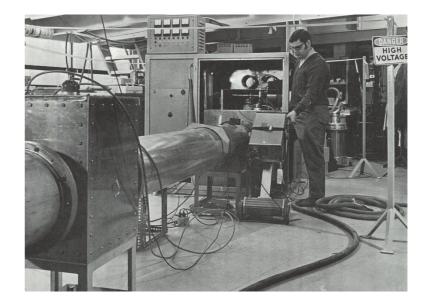
PDF @ TRIUMF Working with Beam Dynamics group headed by Mike Craddock

Both of us were TRIUMF Division Heads for most of our careers

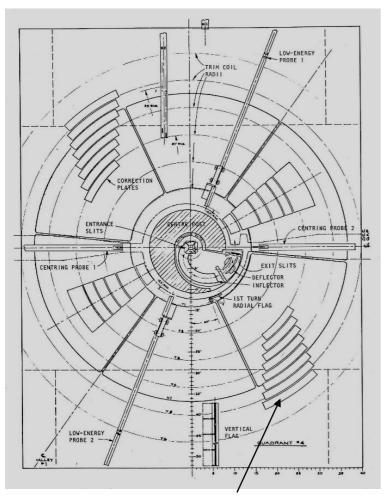

TRIUMF Cyclotron

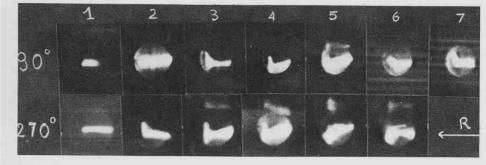
- 500 MeV, 100 $\mu A,\, H^{\scriptscriptstyle 2}$ ions
- simultaneous extraction 2 beams
- cost \$8.4M in 1968

(1972)	TRIUMF(110)) University			
Director	Reg Richards	son			
Chief Eng'r Joop Burgerjon					
Magnet:	AI Otter	Ed Auld			
Beam	George Macker	zie Mike Craddock			
Dynamics: Gerardo Dutto					
	Corrie Kost				
RF:	Roger Poirier	Karl Erdman			
	Milos Zach				
Vacuum:	Dennis Healey	Dave Axen			
ISIS:	Peter Bosman	Bruce White			
Probes:	Bruno Duelli (EWB)				
Controls:	Don Heywood	Dick Johnson			
	Dave Gurd	Ken Dawson (UofA)			
Safety;	Ian Thorson	Brian Pate (SFU)			
	Gary Wait				
CRC:	Ewart Blackmor	е			



Centre Region Cyclotron




- 80 ton magnet
- 8 resonators with flux guides
- 300 keV ion source 0.5 mA
- \bullet 3 MeV in 6.5 turns, 100 μA

Correction Plates

First six turns of beam viewed on a scintillator

Centre Region Cyclotron

Prototype Testing

• ion source, injection

system

- inflector and centre region
- resonators and rf amplifier
- probes and diagnostics
- magnet & field mapping
- controls

Achieved/Learned

- first beam to full energy October 1972
- \bullet intensity to 100 μA June 1973
- resonators too sensitive to temperature
- correction plates required (G. Dutto)
- beam dynamics understood
- ISIS, inflector and probes design
- fabricator identified (EBCO Industries)

Inflector/Deflector



Cyclotron Systems and Challenges

Magnet

- fabrication and assembly went well (1972)
- 4000 tons of steel in 50 ton shipments
- vacuum tank and elevating system installed
- first field maps-centre field too high by 100 g
- difference in steel permeability 0.5" vs 5"
- required gouging out/adding 16 tons of steel
- field tolerance of 1 g required (1 in 4000)
- took ~ 9 months of shimming/measurements
- delays gave other groups time to be ready

Field mapping using flip coils

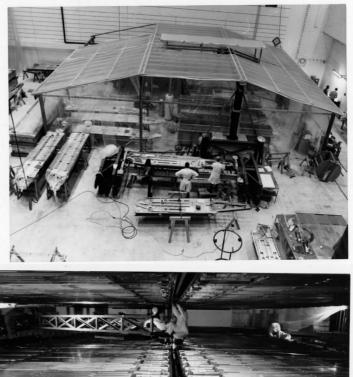
Magnet shims

Cyclotron Systems and Challenges

Radiofrequency System

- 80 resonators, 1.8 MW 23 MHz
- installation and alignment
- water connections, rf contacts

August 1974 RF early operations

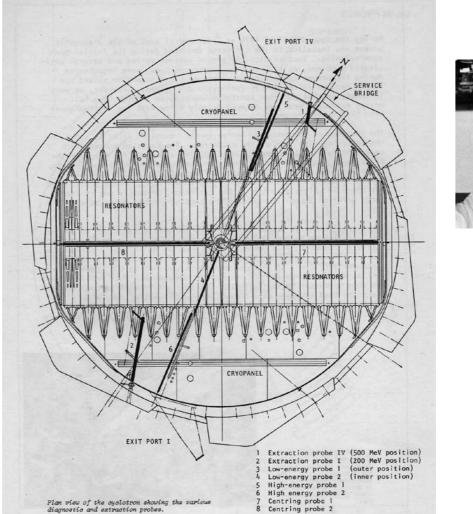

- outgassing and hydrogen pumping
- water leaks and vibrations
- rf contact damage, strongback temp.

Later 1975-80

- centre region electrodes melting
- damage to diagnostic probes
- resonator strongback sagging

(1990-1992) Resonator replacement

• 24 new resonators installed – Major effort organized by **Gerardo Dutto** as head of the Cyclotron Division



Probes & Beam Diagnostics

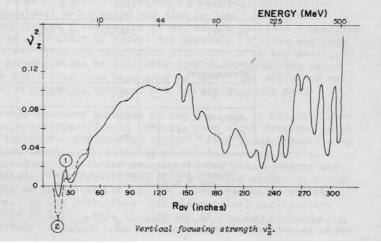
- Some probe concepts did not work eg RF gap probe
- LE probes very sensitive to RF fields in gap
- HE probes pretty reliable
- Temporary extraction foil installed for 500 MeV

Later 1975

- Extraction probes 1 and 4 installed and proved reliable.
- Installed water-cooled probe and PIPs for quicker tuning.
- Found TOF method for tuning isochronism

EWB 1974


Cyclotron Systems and Challenges


Ion Source & Injection

- \bullet high intensity \rightarrow reliability and filament lifetime
- polarized source polarization and intensity
- 40 m long injection line, cyclotron fringe field, reproducibility
- inflector HV reliability at high current

Beam Dynamics

- large magnet, low field, large gap \rightarrow weak focusing
- low ΔE /turn \rightarrow many turns, tight tolerance on mag field, isochronism and vertical centring
- high intensity \rightarrow space charge, large phase acceptance

Cyclotron Commissioning Team

Reg at the controls

Milestones

Injected beam	November 17, 1974
500 MeV	December 15, 1974
100 µA	July 1977 (beam dump)

The "Commissioning Team" Don Heywood Reg Richardson Dave Gurd George Mackenzie Corrie Kost Ewart Blackmore Gerardo Dutto Milos Zach missing Mike Craddock

First Beam December 15, 1974

			Maximum Radius of Beam	Energy (if centred)
Nov.	17		42 in.	6 MeV
Nov.	18		55 in.	10 MeV
			(Radiation in vault!)	
			85 in.	24 MeV
			Replaced low-energy probe	
Nov.	22		150 in.	71 MeV
Nov.	23		183 in.	113 MeV
			Replaced B-20 cryogenerator	
Nov.	25		179 in.	109 MeV
			Vacuum problems	
Nov.	26		195 in.	135 MeV
			Deflector sparking	
Nov.	27		223 in.	195 MeV
Nov.	28		231 in.	210 MeV
			Check $v_z^2 = 0.02$ at R=223in.	
Dec.	1		259 in.	295 MeV
Dec.	3		265 in.	315 MeV
			Beam appears to be centred 300 kV supply in ISIS kaput	
Dec.	11		Trying to re-establish beam RF problems	
Dec.	12		273 in.	345 MeV
			Sparking in ISIS	
Dec.	14		278 in.	363 MeV
Dec.	15	12:10	278 in.	363 MeV
		13:07	309 in.	500 MeV

Cyclotron Operations and Beam Delivery

IEEE Transactions on Nuclear Science, Vol.NS-22, No.3, June 1975

PRODUCTION OF SIMULTANEOUS, VARIABLE ENERGY BEAMS FROM THE TRIUMF CYCLOTRON

J. Reginald Richardson*, E.W. Blackmore, G. Dutto, C.J. Kost, G.H. Mackenzie, TRIUMF and M.K. Craddock Physics Department, University of British Columbia, Vancouver, B.C.

Specification (1972)

2 beams - 100, 10 µA

180-520 MeV

Achieved (today)

3(4) beams

BL1A -170 µA 500 MeV

BL2A -100 µA 500 MeV

BL2C -100 µA 100 MeV

Total – 300 µA today

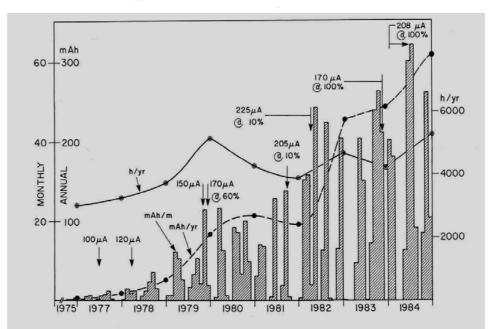


Fig. 71. Beam charge delivered (broken line) and hours of operation (solid line) over the past several years. Milestones in extracted peak current are also indicated. The histogram shows the charge delivered per month.

100 µA Task Force

Gerardo Dutto led this important effort 1975-1978

- 1976 10 μ A dc operation as soon as shielding allowed it on BL1A
- 1977 July ran 114 µA for 45 mins demonstration on temporary beam dump
- 1978 Installation of TNF and final beam dump with 120 µA peak delivered and 30 µA dc operation on a regular basis.

Concerns addressed:

- Ion source delivery and use of duty cycle pulser for peak intensity tuning
- thermal damage to uncooled beam elements, scrapers and beam spill monitors and radiation protection monitors
- activation in cyclotron and beam lines before all installations completed

Erich Vogt Director 1981-1994

Introduction of the Divisional Structure

Science – Dave Axen, later Peter Kitching and Jean-Michel Poutissou

Cyclotron – Gerardo Dutto until his retirement in 2003

Experimental Facilities – Ewart Blackmore

Accelerator Research – Michael Craddock

Applied Program – Brian Pate, later Dick Johnson

Technical & Adminstration – Ken Dawson

Main goal - User friendly laboratory for Science

Early Publications on Cyclotron

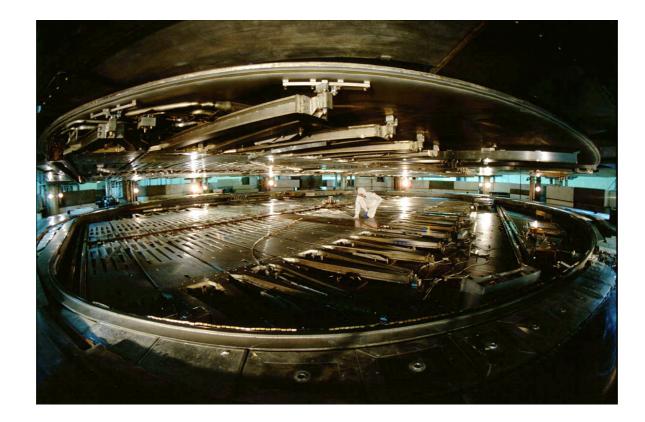
EXPERIMENTAL RESULTS FROM THE TRIUME CENTRAL REGION CYCLOTRON	IEEE PAC
E.W. Blackmore, G. Dutto, W. Joho ⁷ , G.H. Mackenzie, L. Root, and M. Zach TRIUMF, University of British Columbia, Vancouver, Canada	1973
PROPERTIES OF THE TRIUMF CYCLOTRON BEAM	7 th Int Conf Cycl
M.K. Craddock	1975
Physics Department, University of British Columbia, Vancouver, Canada	
E.W. Blackmore, G. Dutto, C.J. Kost, G.H. Mackenzie, J.R. Richardson,* L.W. Root and P. Schmor	
TRIUMF, Vancouver, Canada	
ACHIEVEMENT AND CONTROL OF THE 100 µA BEAM AT TRIUMF	8 th Int Conf Cycl 1978
E.W. Blackmore, P. Bosman, R. Burge, G. Dutto, D. Gill, G.H. Mackenzie and P.W. TRIUMF, Vancouver, B.C., Canada V6T 1W5	
BEAM DEVELOPMENTS AT TRIUMF	- 1096 <u>1</u> 96669
R. Baartman, J. Beveridge, E.W. Blackmore, M.K. Craddock [*] , D. Dohan, J. Doornbos, G. Dutto, K.L. Erdman, C.J. Kost, R. Laxdal, J.A. Macdonald, G.H. Mackenzie, P.W. Schmor, J.S TRIUMF, Vancouver, B.C., Canada V6T 2A3	. Vincent IEEE PAC 1981
Gerardo took responsible for initiating papers on TRIUMF	

cyclotron latest developments at PAC and Cyclotron Conferences

Gerardo's Strengths

Conscientious manager, loyal and supportive of his staff.

Fought hard for budgets for cyclotron improvements and developments.


Important member of the Cyclotron Conference Organizers Co-editor of the 1992 Cyclotron proceedings.

Worked hard but enjoyed his longer lunches – Italian style and Mexico vacations.

Excellent recruiter of new staff with accelerator experience from international laboratories.

Thank you Gerardo

