

LISA Laser Interferometer Space Antenna

LISA - Simulation & LO-L1 data processing WGs

Sweta Shah

Albert Einstein Institute, Hannover Max Planck Institute for Gravitational Physics

Simulation and INReP WGs

Hosted in in2p3 gitlab

- •T-1 LISANode Release and Repository Management
- •T-2 LISANode Requirements Specifications
- T-3 LISANode Optimization
- •T-4 LISANode Interfaces Development
- •T-5 Implementation of TM, SC and MOSA Dynamics
- •T-6 Implementation of Tilt-to-Length
- •T-7 Implementation of Laser Locking Scheme and Frequency Plan
- •T-8 Implementation of Clock Noise
- •T-9 Implementation of Relativistic Effects
- •T-10 Noise models management
- •T-11 Instrumental artefacts

Jean-Baptiste Bayle, Olaf Hartwig + developers

Chairs: Luigi Ferraioli, Joseph Martino, Daniele Vertugno

•TLT 1 Project Planning
•TLT 2 L0-L1 Requirement Doc
•TLT 3 Analytical Formulation
for performance model
•TLT 4 Notations &
Conventions
•TLT 5 Physical Units
•TLT 6 Astrophysical Dataset
•TLT 7 Phase A Reference
Pipeline: INReP
•TLT 8 Test & Verification
More: Sampling and Filter
tests, etc.

Scrum Team: Karsten Wiesner, Niklas Reinhardt, Martin Staab, Olaf, Hartwig, Jean-Baptiste Bayle, Jakob Livschitz, Fabian Euchner, Tim Haase, Uwe Lammers, Sweta Shah

Chairs: Sweta Shah, Yves Lemiere

~ 2.5 million km

Noise Floor

Figure: LISA L3 Proposal

Raw data - LO

Markus Otto, PhD thesis 2014

- LISANode python graph based, atomic nodes in C++
 - Laser beam frequency offsets & fluctuations

 $E(\tau) = E_0(\tau)\cos(2\pi\Phi(\tau))$ $\nu(\tau) = \nu_0 + \nu^o(\tau) + \nu^\epsilon(\tau)$

Modulations: sidebands, clock tone

$$\mathbf{E}(\tau) = E_0 e^{j2\pi(\Phi_c(\tau) + m\Phi_m(\tau))}$$

Beam propagation - SC proper time, propagated signals by proper pseudo-range (light travel time + proper time conversion)

LISA Convention and Notation Ref: Eg. arXiv 2103.06976

LISA Simulation Model Technical Note Bayle & Hartwig

💞 🔤 LO: Observation Equations

Unequal Arm Michelson Ifo

$$x := y_{\text{PD},1}(t - 2L_2) - y_{\text{PD},2}(t - 2L_1) - [y_{\text{PD},1}(t) - y_{\text{PD},2}(t)]$$

Giamperi, Hellings, Tinto & Faller, Opt. Comm. 123, 1996 Tinto & Armstrong, PRD 59, 1999 Figure from M. Otto Thesis 2014

💞 🔤 L1 Time Delay Interferometry

Arms unequal by 1% ~ 20000 km

 $X = [(s_{31} + s_{13,2}) + (s_{21} + s_{12,3'})_{,22'}]$ $-[(s_{21} + s_{12,3'}) + (s_{31} + s_{13,2})_{,33'}]$

3 Independent noise-free signals

Lot of work has been done and continuing: Armstrong et al, Otto et al, Vinet et al, Dhurandhar

💞 🔤 L1 Time Delay Interferometry

 $L_1 \neq L_2 \neq L_3$ Unequal & time varying arm @ 10m/s S/C 3 S/C 2 S/C 1

Lot of work has been done and continuing: Armstrong et al, Otto et al, Vinet et al, Dhurandhar
$$\begin{split} X_1 &= [(s_{31} + s_{13;2}) + (s_{21} + s_{12;3'})_{;2'2} + (s_{21} + s_{12;3'})_{;33'2'2} \\ &+ (s_{31} + s_{13;2})_{;33'3'2'2}] - [(s_{21} + s_{12;3'}) \\ &+ (s_{31} + s_{13;2})_{;33'} + (s_{31} + s_{13;2})_{2'233'} + (s_{21} \\ &+ s_{12;3'})_{;2'22'233'}] + \frac{1}{2} [(\tau_{21} - \tau_{31}) - (\tau_{21} - \tau_{31})_{;33'} \\ &- (\tau_{21} - \tau_{31})_{;2'2} + (\tau_{21} - \tau_{31})_{;33'33'2'2} \\ &+ (\tau_{21} - \tau_{31})_{;2'22'233'} - (\tau_{21} - \tau_{31})_{;2'233'33'2'2}] \end{split}$$

💞 🔤 LO: Observation Equations

$$\tau(t) = p_{1'} - p_1 + \mu_{1'}$$

💞 🔤 LO-L1: Pre-processing before TDI

G

Clock 1

Carrier signal modulated with PRN and sideband

Pseudo Random Code (PRN)

Spectrum of beatnote

Kalman Filter

USOs drift and have biases Yan Wang et al. PRD 90, 2014 Yan Wang et al. PRD 92, 2015

With: Theory & Metrology in SYRTE, Paris

Z

Laser locking schemes necessitated by :

- Doppler shifts (±10MHz) in long arm laser beams
- Bandwidth limitation of photoreceivers and phasemeter: $5-25 \rm MHz$
- 6 Lasers
- Give 9 different beatnote frequencies
- Solution: 1 main/master, 5 transponders with offset phase locking

There are 6 configurations IF one is chosen as main. Use computational geometry to find suitable offset frequencies

Source is any Misalignment ~91 Misalignments per MOSA

Assume: USO frequency stability 10^{-13}

Noises: Random processes from lasers, USOs

Given: 24 OB measurements

ASD of TDI alpha observable, Analytical

Tinto & Hartwig, PRD98, 2018

PSD of TDI Michelson observable, Numerical LISANode

Hartwig & Bayle, arXiv 2005.02430

Ongoing studies to better understand effects

- Synchronization
- Glitches
- Various orders of algorithms in INREP
- Frequency planning effect
- Secondary noise echoes in TDI
- •

LISA Laser Interferometer Space Antenna

Thank You!

Reproducible

