RIUMF

Measuring the Bound-State Beta-decay Rate of Thallium-205

Guy Leckenby,^{1,2} Iris Dillmann,^{1,3} and Christopher Griffin¹ ¹TRIUMF ²University of British Columbia ³University of Victoria Contact: gleckenby@triumf.ca

Bound-state beta-decay (β_b^- -decay) is an exotic decay mode where the ejected electron is emitted directly into an orbital of the daughter atom. It is a very interesting decay mode because it can **change the stability** of Highly Charged Ions (HCIs). This has revolutionised specific astrophysical applications. Two examples are highlighted next. LOREX Neutrino Flux

The β_b^- -decay of ²⁰⁵Tl is crucial for a very exciting measurement of ultra-low-energy solar neutrinos via activation of the thallium-bearing **mineral lorandite**. The LOREX experiment measures ²⁰⁵Pb accumulation to measure neutrino flux from neutrino capture:

 $^{205}Tl^{0+} + \nu_e(53 \, keV) \rightarrow ^{205}Pb^{0+,*} + e^{-1}$

Because the neutrino capture reaction rate is unmeasurable, we need the **beta-decay** nuclear matrix element of ²⁰⁵TI for LOREX to succeed. Only the β_{b}^{-} -decay of ²⁰⁵Tl can measure this because neutral ²⁰⁵TI is stable.

The low-energy solar neutrino spectrum, including energies probed by other neutrino activation experiments. K.M. Subotic et al., AIP Conf. Proc. 455 (1998) 912 M.K. Pavicevic, Nucl. Inst. Meth. A 895 (2018) 62

S-process Chronometer

²⁰⁵Pb is an s-only isotope that is very valuable as a chronometer for early solar system formation, but we need to clarify the precise back-decay of ²⁰⁵TI in extreme environments.

Continuum beta-decay (left) ejects the electron vs bound-state beta-decay (right) where the electron is captured. β_b^- -decay is considered the time reverse of electron capture.

Nuclear Structure of ²⁰⁵TI

For bare ions, the Q-value of the beta-decay is increased by the K-shell binding energy causing some nuclei that are stable in the neutral state to be radioactive in highly charged states.

The nuclear structure and decay scheme of ²⁰⁵Tl & ²⁰⁵Pb. Image courtesy of Ragandeep Singh Sidhu (GSI).

Storage Rings for Highly Charged Radioactive lons

Highly Charged Ions (HCIs) will recombine upon contact with any matter. Storage rings are the only systems capable of storing HCIs for hours with ulta-high vacuum conditions. The Experimental Storage Ring (ESR) at GSI, Darmstadt is currently the only ring capable of storing radioactive beams. A β_h^- decay measurement has two parts, the electron stripping correction and the storage + decay counting.

Part 1: Charge-Changing **Cross Section Measurement**

 β_b^- -decay daughters have the same masscharge ratio as parents; therefore, we cannot separate them in the storage ring. To count decay products, we need to strip off the bound electron with a gas target. Thus, we need to correct for daughters lost via electron capture. The charge-changing cross-section was measured with a hydrogen-like ²⁰⁶Pb⁸¹⁺ beam. Electron loss products counted by CsISiPHOS detector on inner side of ring. Electron capture products counted by MWPC detector on outer side of ring.

 $N_{Pb}(t_S)$ $\cdot \frac{\sigma_{+} + \sigma_{-}}{\sigma} = \frac{\lambda_{\beta_b}}{\gamma} t_s \cdot \left[1 + \frac{1}{2} (\lambda_{Pb}^{cc} - \lambda_{Tl}^{cc}) t_s + \cdots \right]$ $N_{Tl}(t_s)$

²⁰⁶Pb⁸¹⁺ beam impinged on Ar gas target causing electron capture and loss. These products are separated at the next dipole magnet for counting.

Part 2: 205TI Storage & Decay Ratio Counting

To measure the decay of ²⁰⁵Tl, over 100 injections from the FRagment Separator (FRS) are accumulated in the ESR. The ²⁰⁵TI beam circulates for several storage periods, between 0 – 10 hours. ²⁰⁵Pb decay products are then stripped with an Ar gas target, and the intensity ratio of ²⁰⁵Pb/²⁰⁵Tl is measured.

Plotting this ratio (correcting for various losses in the ring) indicates accumulation of ²⁰⁵Pb with storage time; directly attributable to β_h^- -decay. The slope gives us our desired reaction rate.

