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Charging Mechanisms and Orbital Dynamics of Charged Dust Grains in Particle Accelerators

Orbits in a logarithmic potential with different shape parameters
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Micrometer-sized dust grains are known to Due to the presence of synchrotron radiation _ > k=0.143 k= 2.443
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be the cause of several detrimental effects and electron clouds, the main charging .
In particle accelerators: mechanisms are: “?E o10.- Orbits in a |Ogar|thm|c potent|a|
Electron Collection (J,), negative current; T _0.15- " . . .

= |ntensity drops In electron storage rings - - o 000l Jo+ Js+ T . Since the grain accumulates a charge opposite

(TRISTAN, CESR, HERA, DORIS), Secondary electron emission (15)1 pOSItlve S;D 1'50 to the one of the beam, bounded orbits exist:

- current; i .50 - _ | _

= Pressure bursts in the SuperKEKB 35; (b) kT =300 eV A single shape parameter (k) describes the

positron storage ring; Photoelectric emission (Jp,), positive g shape of the orbits;

' current. ©  0.501 . .

" Sporadic beam losses as well as 5 The radial period can be found from the

magnet quenches in the LHC. The balance between these currents dictates A 00 charge-to-mass ratio and the angular

the equilibrium surface potential (net charge) —0.50- momentum. It dictates the time between
The presence of contaminants in the of the grain. 100l | | | | beam-dust interactions:
vacuum chamber of modern accelerators -40 =30  -20  —10 0 10 H nis ionized (posit ) dur
. . . . Surf; tential, & (V e grain is ionized (positive current) durin
is unavoidable, even with careful cleaning | uriace potential, @ (V) Jralt = op .
. . Low energy electrons (< 10 eV) from the Charging currents for 10 eV or 300 eV electrons impinging on a beam-dust interactions.
measures. What can explam thelir dust grain in the LHC. The photoelectric current is the same in
surrounding e-cloud contribute the MOSt. both cases.
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The same charging mechanisms can be used

Representation of a dust grain on the surface of the
beam screen.

to explain historical observations in the LHC

Expected equilibrium potential in low and high e-cloud density conditions. The accumulated charge ends up being

negative in the LHC and can be both positive or negative in e- storage rings due to lower e-cloud densities. and in e storage rings.

Discovery,
accelerated



