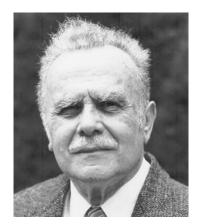
A CANS for Canada: A future neutron source for Canada

Drew Marquardt

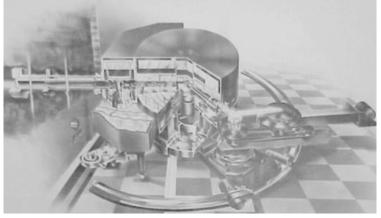
Department of Chemistry and Biochemistry University of Windsor

Beam-based Probes of Condensed Matter Physics, Chemistry and Related Fields in Canada Virtual Meeting June 3, 2021

METHYL-B - CYCLODEXTRIN


≇ENGINEERING œ Asymmetri Lipid vesicles

Rich History of Neutron Scattering



- 1994 Nobel Prize in Physic Bertram Brockhouse
 - For the development of neutron scattering techniques for studies of condensed matter.
- Confirmed the existence of topological materials
 - Prediction of such materials was the subject of the 2016 Nobel Prize in Physics

Jniversity_{of} Windsor

Neutron's Impact in Canada

- Clean environment
 - Improved the reliability of turbines in hydroelectric dams.

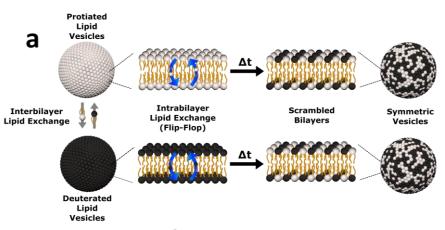
- Economic competitiveness
 - Developed methods of reducing scrap waste during manufacturing.

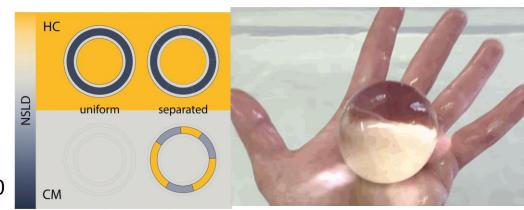
Neutron's Impact in Canada

- Safety and security
 - Extended the lives of Canada's fleets of ships.

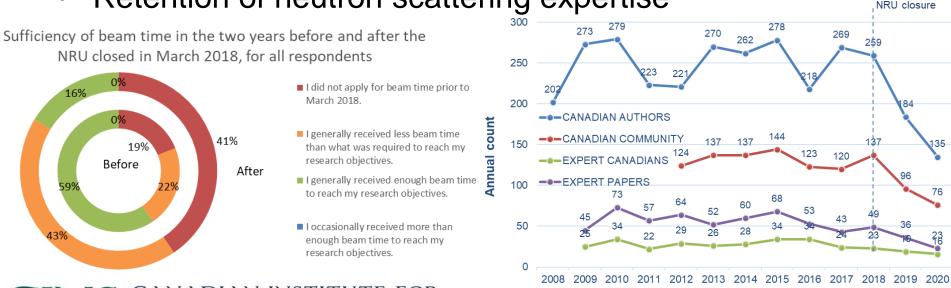


- Health and food security
 - Accelerate the development of drought resistant crops.


Biological connection


Nanoscale, 2020,12, 1438-1447

Chem. Res. Toxicol., 2020, 33, 9, 2432–2440 *BBA-Biomembr.,* 2020, 1862, 9, 183189


New J. Chem., 2021, 45, 447-456 *Biophys. J.*, 2019, 116, 5, 755-759

Neutron Scattering Challenges

- 40% of users have not conducted an experiment since the NRU closed (March 2018)
- Exploratory experiments
- Expand the user base without a domestic source
- Retention of neutron scattering expertise

CINS CANADIAN INSTITUTE FOR NEUTRON SCATTERING

* The neutron **user community** is defined as those with 2 publications in a 5 year period using neutron beams.

Publication Year

The expert community is defined as those with 4 publications in a 2 year period using neutron beams

Short-term and Long-term Efforts

What are we going to do tonight Brain?

Same thing we do every night. Try to secure Neutrons for Canada

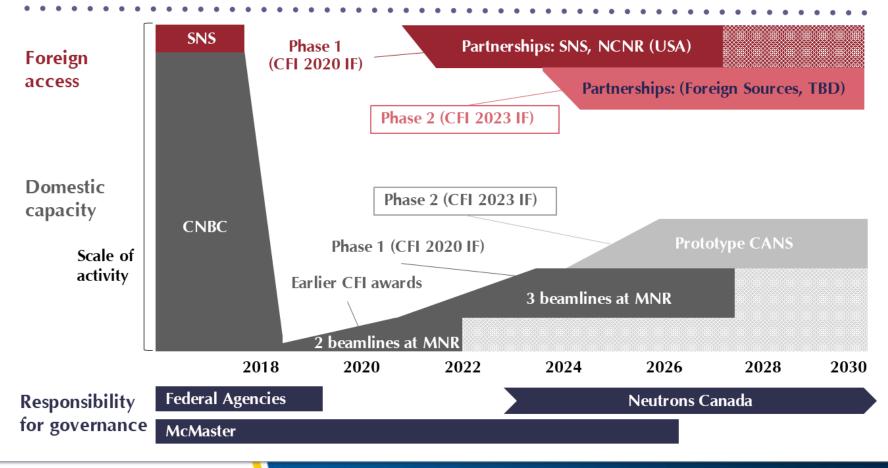
University of Windsor

https://wegotthiscovered.com/tv/pinky-brainreturning-animaniacs-revival/

Researcher Led Canadian Initiatives

CFI-IF McMaster et al.

- \$14.25M (~\$47M total)
- Upgrade MNR neutron scattering facilities
- Foreign access
- Bridge the next 5-10 years


Windsor & TRIUMF et al.

- NFRF- E (awarded)
 - CANS design study
- **CFI-IF** (in preparation)
 - Construction of CANS prototype
 - Further foreign access
- Potential long-term source for Canada.

National Strategy

National strategy to rebuild Canadian capability for materials research using neutron beams

Sources of Neutrons

- Fission Reactor $\rightarrow U^{235} + n$ (thermal)
 - Expensive ~\$1B
- Spallation \rightarrow "blowing chunks" (*p*,*n*)
 - Expensive ~\$1-2B
 - High energies
- Stripping-Reaction \rightarrow Be/Li(p,n)
 - Low energy = small footprint = inexpensive
 - Modular
 - Compact Accelerator Neutron Source (CANS)

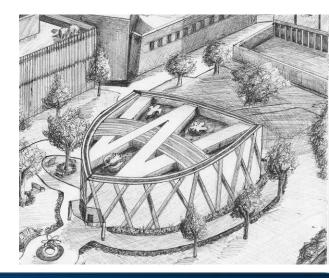
Prototype Canadian CANS (PC-CANS)

University of Windsor-led initiative to construct and operate a Compact Accelerator-based Neutron Source (CANS)

o 40 researchers from 19 institutions spanning 4 countries

Heavy Lifting

Jniversity of Windsor



Thomas Gutberlet (Julich)


PC-CANS: Missions

- 1. Construct a world-leading CANS prototype to demonstrate the potential for the technology
- 2. Conduct research using the following neutron methods:
 - Small-angle neutron scattering or PDF analysis
 - Diffraction/Neutron imaging
 - Boron Neutron Capture Therapy (BNCT)
- 3. Supply Windsor Regional Hospital with Fluorine-18 isotope for the PET scanner

Prototype Canadian CANS: PC-CANS

PC-CANS: Neutron Production

3) Proton beam impinges target for ¹⁸F production

5) Neutron beams enter diffraction instruments.

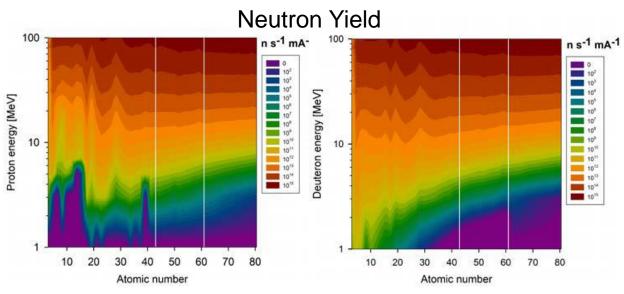
2) Proton beam impinges a compact target-moderator assembly to produce 4) F neutrons for BNCT con

4) Proton beam impinges a compact target-moderator assembly to produce neutron beams

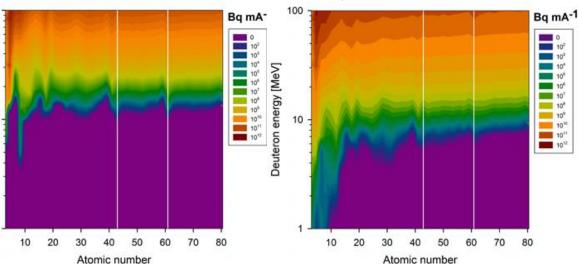
Target-Moderator Research

- Accelerator requirements for:
 - Neutron scattering
 - o BNCT
 - Isotope production
- Target material and geometry
 - $\circ~$ How to handle the high powers on target
 - o Multiple targets?
 - Optimized extraction strategy
- Build from our friends at Julich and in Japan

Energy-Ion-Target Considerations


100

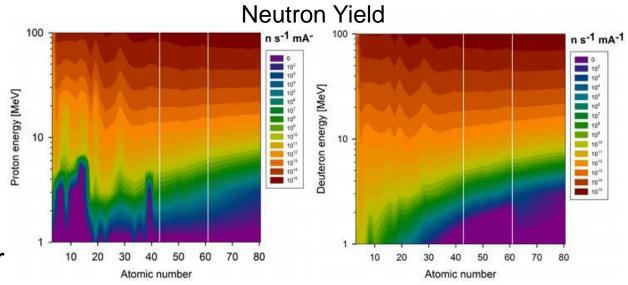
Proton energy [MeV]


10

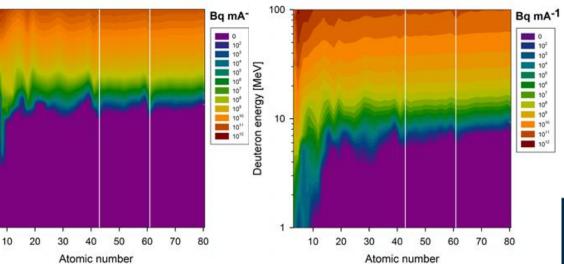
- Energy
 - ¹⁸F production
 - Radiation safety
- Ion
 - Proton or deuteron
 - Accelerator needs
- Material
 - Handling needs

Conceptual Design Report Jülich High Brilliance Neutron Source (HBS) T.Brückel, T. Gutberlet (Eds.)

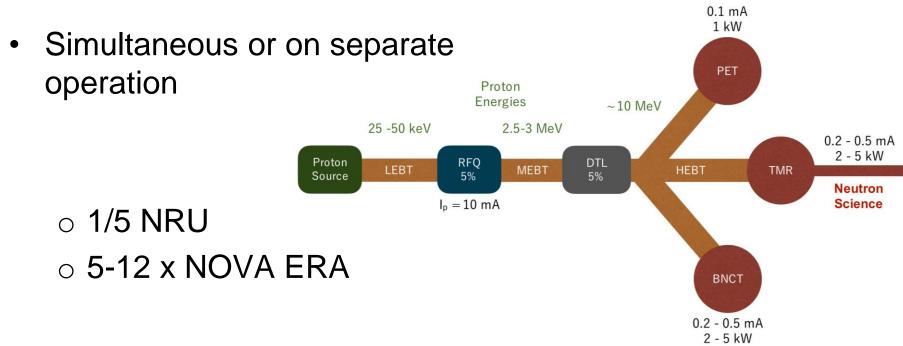
Tritium Activity


Energy-Ion-Target Considerations

• 10 MeV

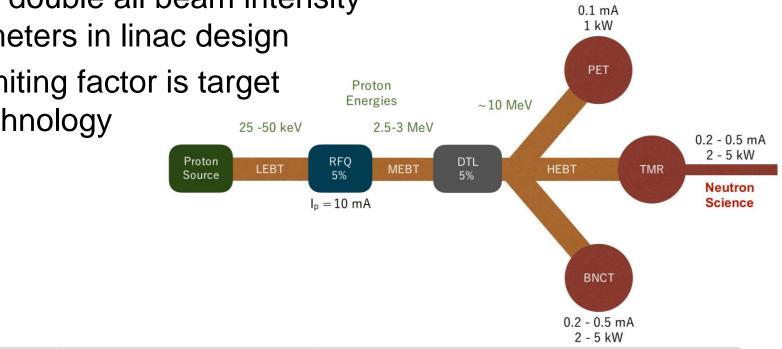

- Competitive ¹⁸F yield
 No tritium activity
- Protons
 - Simpler accelerator
 - Less tritium activity
- Beryllium (Be) target
 - Liquid lithium too
 hazardous for a
 university campus

Proton energy [MeV]


Conceptual Design Report Jülich High Brilliance Neutron Source (HBS) T.Brückel, T. Gutberlet (Eds.)

Tritium Activity

Vision for PC-CANS



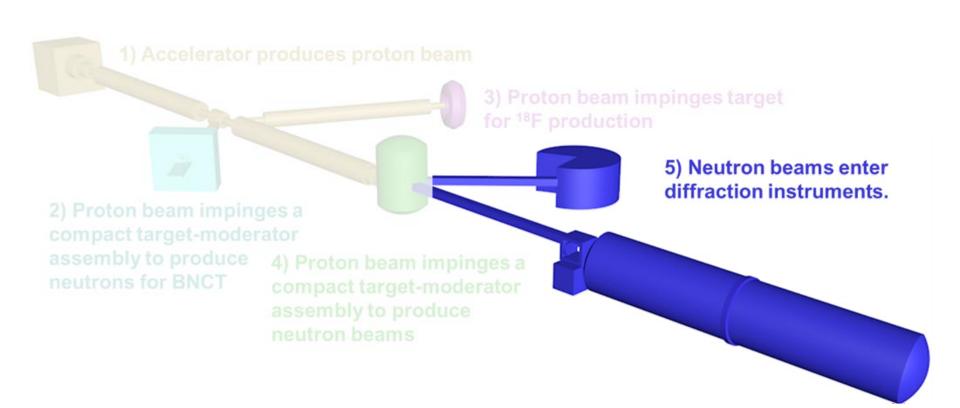
Relative Perfo	ormance	Conventional Sources	CANS
High	5–10+	SNS (\$2B); ESS (\$3B)	
Medium	1	ISIS (\$850M); NRU (>\$500M)	Canada-scale facility* (\$100–\$200M)
Medium-Low	1/5	MNR (>\$100M)	Our prototype* (\$10–\$12M** + 3 instruments)
Low	1/25		NOVA ERA* (\$6M** + 6 instruments); LENS; RANS

Vision for PC-CANS

- Could double all beam intensity • parameters in linac design
 - Limiting factor is target technology

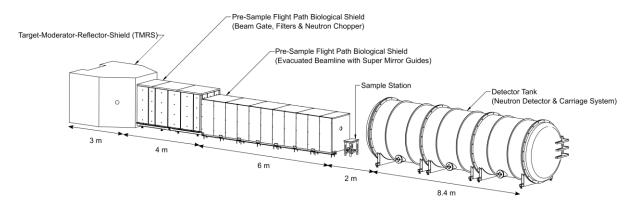
Relative Perfo	rmance	Conventional Sources	CANS
High	5–10+	SNS (\$2B); ESS (\$3B)	
Modium	4		
Medium-Low	1/5	MNR (>\$100M)	Our prototype * (\$10–\$12M** + 3 instruments)
LOW	1/25		NOVA LIVA (VOIVI TO INSTRUMENTS), LENO, NANO

Vision for PC-CANS


- Could double all beam intensity parameters in linac design
 - Limiting factor is target technology 25-50
- <u>1 NRU</u>
- 10-25 x NOVA

n linac de	sign		0.1 mA 1 kW			
ctor is ta	rget	Proton Energies	~10 MeV	PET		
/	25 -50 keV	2.5-3 Me	eV			0.2 - 1 mA
Proton Source	LEBT	RFQ 5% MEBT	DTL 5%	НЕВТ	TMR	2 - 10 kW Neutron Science
4				BNCT		
				0.2 - 1 mA 2 - 10 kW	I	
		0.4.10				

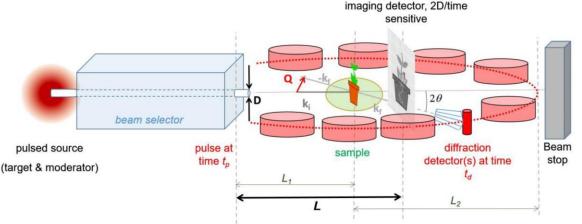
Relative Perfo	ormance	Conventional Sources	CANS
High	5 101		
Medium	1	ISIS (\$850M); NRU (>\$500M)	Canada-scale facility* (\$100–\$200M)
Modiani Lon	1/5		
Low	1/25		NOVA ERA* (\$6M** + 6 instruments); LENS; RANS


Materials Science Research

Neutron Scattering Instruments

- Small Angle Neutron Scattering (SANS) Instrument
 - Large demand for SANS
 - Different from MacSANS with a pulsed, cold source.

<u>OR</u>


- Pair Distribution Function (PDF) Analysis Instrument
 - Compliment Canadian Light Source capabilities
 - Take advantage of epithermal neutrons

University of Windsor

Laxdal et al. J. Neutron Res. 2021, submitted

Neutron Scattering Instruments

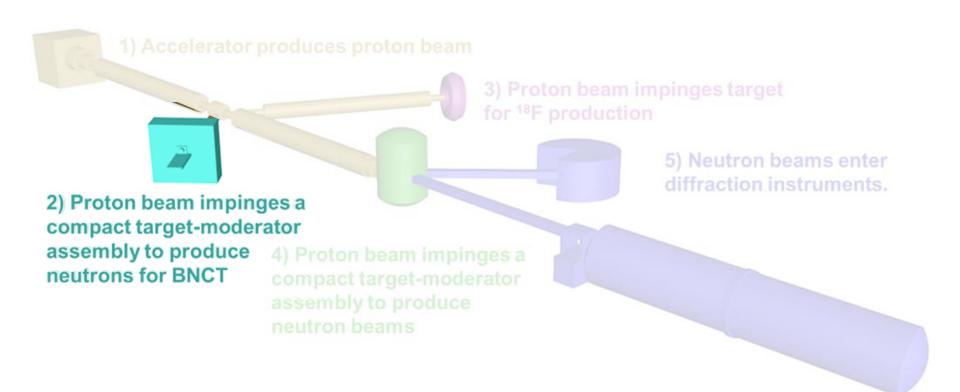
- Diffraction/Imaging Instrument
 - The imaging beamlines at McMaster are generally not accessible for academic research
 - Canadian Nuclear Laboratory driven

- Potential 3rd beam port
 - Future upgrade or R&D.

Laxdal et al. J. Neutron Res. 2021, submitted

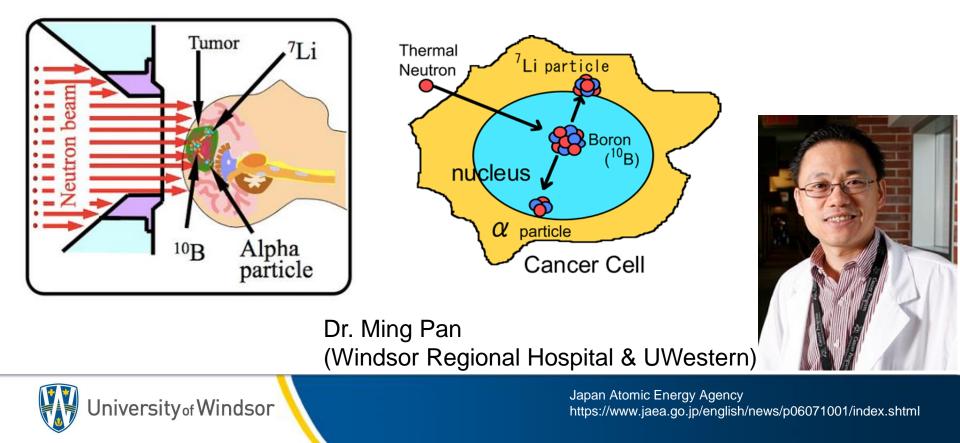
Neutrons for Materials Research

- Examine the stresses deep inside industrial materials that X-rays cannot penetrate.
- Unravel the structures of biological systems under physiological conditions.
- Sensitivity to H to develop technologies such as fuel cells and hydrogen storage materials.
- Magnetic property to develop superconductive, magnetic and quantum materials.



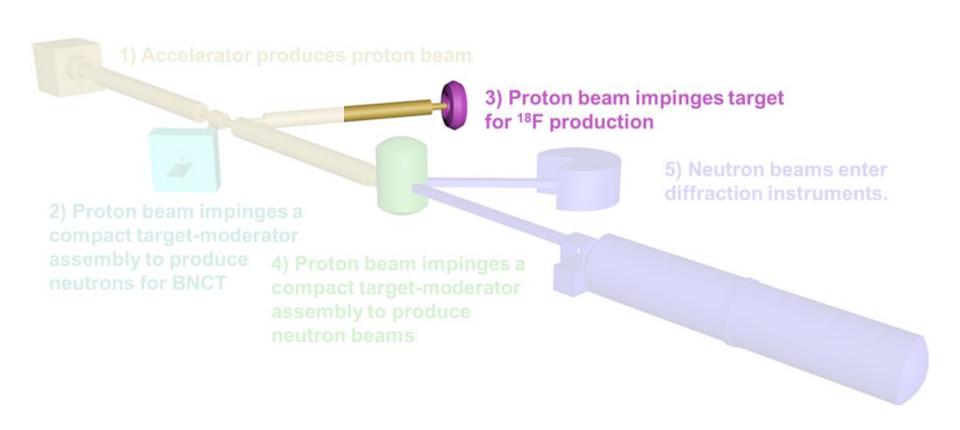
Neutron Imaging and Radiography

- Internal flaws of metal products
 - cracks, inclusions, voids, bubbles, foreign materials, density variations & misalignments
- Corrosion within aluminum products
- Radioactive objects in its shielding
- Authentication of artifacts from archeological digs
- Hydrogenous foreign substances in sealed units


Boron Neutron Capture Therapy

Boron neutron capture therapy (BNCT)

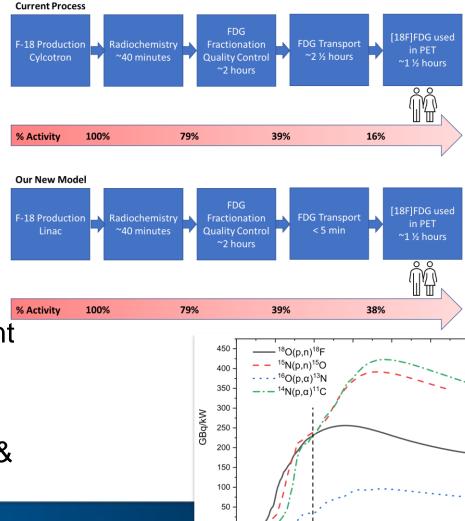
- BNCT is a Powerful, highly targeted therapy
- PC-CANS will be first & only BNCT facility in Canada.



Boron neutron capture therapy

- Initially, an entry level beamline will provide a development path for a high performance BNCT therapy machine while
 - Still providing reasonable quantities of neutrons for BNCT R&D
- Linac design has the option for more current to be supplied to a particular station should the target design or beam spot size allow

Medical Isotope Production



Supplying WRH PET Scanner with FDG

- PET scanning requires FDG:
 [¹⁸F]-fluorodeoxyglucose
 ¹⁸F has a t_{1/2} ≈120 min.
- Current patient load
 - ~700 patients/year
- 2030 projected patient load
 - ~2500 patients/year
 - not sustainable with current model
- Access to even t_{1/2}
 - ¹⁵O (2 min), ¹³N (10 min), &
 ¹¹C (20 min)

25

30

20

15

Beam energy (MeV)

PC-CANS and Beyond

- PC-CANS Prototype fully operational
 - Active materials and BNCT research
 - Ongoing and reliable source of FDG for WRH and surrounding
 - Further target-moderator research and optimization
- How can CANS technology best serve Canada?
 - Large scale national user facility
 - A series of university sized CANS distributed throughout Canada
- Governance
 - National governance structure

https://images.app.goo.gl/pJ H19hQWbhL1CNjb6

Acknowledgements

- Dalini Maharaj (UWindsor/TRIUMF)
- Mina Abbaslou (UVic/TRIUMF)
- Ming Pan (WHR)
- Oliver Kester (TRIUMF)
- Bob Laxdal (TRIUMF)
- Alex Gottberg (TRIUMF)

- Beatrice Franke (TRIUMF)
- Zin Tun (McMaster/TVB)
- Thomas Gutberlet (Julich)
- Daniel Banks (TVB)
- Windsor Regional Hospital
- Canadian Neutron Initiative
- NFRF Team

New Frontiers in Research Fund Fonds Nouvelles frontières en recherche

RIUMF

Canadian Nuclear Laboratories

Laboratoires Nucléaires Canadiens

