

Neutrons for today and tomorrow Next generation accelerator based neutron sources

Thomas Gutberlet, JCNS

Science with Neutrons

15

lich Centre for Neutron Science

BRILLIANS

SOURCE

History of Neutron Sources

K. Andersen et al., J.Phys.Conf.Ser. 746, 012030, 2016

Neutron Production

Nuclear fission

Reactor based neutron source (ILL, FRM II, NIST, JINR, ANSTO a.m.m.)

Spallation

Nuclear processes

Spallation based neutron source (ESS, ISIS, SINQ, SNS, CSNS, J-PARC, KEK) Accelerator based neutron source (LENS, RANS, HUNS, NUANS, IREN a.o.)

Neutron Production

Nuclear Process	Example	Neutron Yield	Heat Release	Source
			[MeV/n]	
Spallation	800 MeV p on	27 n/p or	55 or	ISIS, SINQ,
	²³⁸ U or Pb	17 n/p	30	ESS
Nuclear fission	Fission of ²³⁵ U by	1n/fission	180	MLZ, ILL
	thermal neutrons			
⁹ Be(p,n:p,pn)	11 MeV p on Be	4 x 10 ⁻⁵ n/d	2000	RANS, LENS
⁹ Be(d,n) ¹⁰ Be	15 MeV d on Be	1.5 x 10 ⁻² n/d	1000	
Nuclear photo effect	100 MeV e ⁻ on ²³⁸ U	5 x 10 ⁻² n/e ⁻	2000	HUNS,
from e-Bremsstrahlung				n-ELBE
Deuteron stripping	40 MeV d on liq. Li	7 x 10 ⁻² n/d	3500	
D-T in solid target	400 keV d on T in Ti	4 x 10 ⁻⁵ n/d	10000	

Ref.: G. Mank, G. Bauer, F. Mulhauser, Accelerators for Neutron Generation and Their Applications, Rev. Accl. Sci. Tech 04, 219 (2011)

Neutron Production

Low energy nuclear processes

Nuclear process	E [MeV]	n/ion	n/(s mA)	n/(s kW)
p ⇒ Be	50	2.70%	1.68E+14	3.37E+12
d ⇒ Be	50	5.90%	3.69E+14	7.38E+12
p ⇒ Li	20	0.33%	2.08E+13	1.04E+12
$p \Rightarrow V$	50	5.08%	3.18E+14	6.35E+12
p ⇒ Ta	50	6.40%	4.00E+14	8.01E+12
p⇒W	50	6.95%	4.35E+14	8.70E+12

Ref.: LLB - Compact Neutron Sources for Neutron Scattering

Scalable Neutron Sources – from CANS to LENF

9/24

Compact Neutron Sources Anytime, Anywhere

RANS: 15m, 25ton, MeV~meV Cold source experiment from 2018

RANS2: ~5m, ~5ton, 500keV~meV

Visualization of the corrosion

and its related water movement in painted steel

Averaged water content ratio

anticorrosion

Corrosion: 2~% of GDP is spent for

-> J-PARC experiment

Towards strength and formability

一般的に加工性と強度は反比例関 係にある

2相強化鋼

TS×EL=15,000 MPa·%

00 800 1000 1200 1400 1 引張り強度 TS MPa

閻溶強化鋼(IF型) 変態誘起塑性 (TRIP鋼)

型性加工学会 第250回型性加工シンポジウム資料 牛尾英明(本田技)

JF型軟鋼

折出強化鋼

Iron and steel Corrosion visualization

RD+TD+ND

Texture evolution On-site use

Retained austenite fraction measurement

Lattice spacing d [nm]

New steel

development

chungszentrum 11/24

Compact Neutron Sources Anytime, Anywhere

RANS: 15m, 25ton, MeV~meV Cold source experiment from 2018

RANS2: ~5m, ~5ton, 500keV~meV

Non-destructive inspection infrastructure

for concrete structures

Hokkaido University Neutron Source (HUNS)

Electron Linac First beam: 1973 35 MeV, 30 μA, 50 pps : ~1 kW

Cold neutron source W & Pb-Target Solid methane cold moderator @17K

well know in Neutron Science not in materials science..

SAXS/SANS ratio can be evaluated only using in-house facilities

- 13 MeV proton linac driver
- ⁹Be(p,n) to produce neutrons
- Thermalization (polyethylene, solid $CH_4@6.5 K$)
- 100 n/(ms.cm²)

Accelerator Based Neutron Source Projects Martonvásár CANS

- CANS business plan:
 - Neutron instrumentation tests for own needs: saves 100 k€/y
 - Products and services for neutron source development
 - Beams for industrial applications
 - Beam for cancer therapy (BNCT)
 - Development of neutron source for > 2023 in Hungary

Specifications: accelerator

- \geq 2.5 MeV, \leq 20 mA, 50 kW CW capable H^+ beam
- Pulsed operation (5 % duty factor) for material diagnostics
- CW operation for irradiation (50 kW)
- 201.25 MHz (?) RF amplifier, solid state (?)
- Upgradable in energy

MIRR. TR.N

Mitglied der He

17/24

SARAF concept and top level requirements

Parameter	Value	Comment	Concer Newloon Research Conten
Ion Species	Protons/Deuterons	M/q ≤ 2	Sored Nuclear Research Center
Energy Range	5 – 40 MeV	Variable energy	
Current Range	0.04 – 5 mA	CW (and pulsed)	[3] radiation and isotopes
Maintenance	Hands-On	Very low beam loss	[2] target Heavy
In operation since 2009	[1] ~30 m long act NEW lattice und 1) fast p	celerator er construction barticles tine	a) applications 2) nuclear reaction Planned for 2023
er Helmholtz-Gemeinschaf	operation till last i built to test charac and prove the n technologies	month, cterize novel s	HIGH BRILLIANCE SOURCE 18/24

SOREQ

Table 4.2.1 Parameters of the ESS-Bilbao project.

Proton linac

50 MeV, 16 kW 2.25 mA (average), 20 Hz Long pulse, width 1.5 ms

Target station	Major activities
Be(p, n) Solid methane with water premoderator $\sim 1 \times 10^{15}$ n/s (calc.)	SANS, moderator and neutron- scattering component testing

NOVA ERA (Design)

Laboratory facility: NOVA ERA

Workhorse instruments:

scattering / analytics / imaging

University / industry laboratory Easy access, flexible use

Typical flux at sample position: $10^{3} - 10^{5}$ cm⁻² s⁻¹ at 400 W power

CDR NOVA ERA FZJ Schriftenreihe, 2017 ISBN 978-3-95806-280-1

http://www.fz-juelich.de/ SharedDocs/Downloads/JCNS/JCNS-2/EN/Conceptual-Design.pdf

HBS project

High current linear accelerator

- 100 mA, 70 MeV pulsed proton beam
- Variable frequency

Several target stations

- Optimize pulse structure (length, rep. rate)
- Optimize thermal spectrum

Every beam port serves only 1 Instrument

- Optimize cold source spectrum
- Optimize geometry
- Integrate neutron optics with beam port

Small shielding

- Neutron guide around cold source
- Chopper at <1 m from target

Jülich High Brilliance Neutron Source (HBS)

www.fz-juelich.de/jcns/jcns-2/EN/Forschung/ High-Brilliance-Neutron-Source/_node.html

Concept of the HBS-Accelerator

Beam current:10-100 mADuty factor beam: up to 10%Duty factor RF:up to 20%

For all beam currents, duty factors and energies (above 5 MeV) the DTL layout is the same.

This allows scalability for CANS with an average beam power between 1 kW to 1 MW.

H. Podlech et al., Proc. IPAC'19 (2019)

Concept of the HBS-Accelerator

Forschungszentrum

25/24

SOURCE

Centre for Neutron Science

Peak beam power and average beam power levels of proton linacs

Multiplexer

26/24

Multiplexer

HIGH

SOURCE

entre for Neutron Science

BRILLIANCE

JÜLICH

Forschungszentrum

27/24

Rimmler et al., EPJ Web of Conf. 231, 02002 (2020)

Efficient Coupling of Target to Moderator

Proton induced neutron yield

Target material and design

Zakalek et al. EPJ Web of Conf. 231, 03006 (2020)

HIGH

SOURCE

ich Centre for Neutron Science

water coolant out

Target-Moderator-Reflector unit

Target-Moderator-Reflector unit

Neutron moderation 0.15E11 - 1<u>1%Añ</u> - 1 RAS - 1 HAS - 1 HAS - 1 HAS - 1 Neutrons Extraction channel , sp.5E10 **Dimensions** 6 Thermal \leftrightarrow Brillianc duty cycle moderator Φ [10¹²cm⁻²s⁻¹mA⁻ⁱ] 5 beam Cryogenic moderator 4 10^{0} 10^{1} 10^{2} Proton Frequency, Position Energy [meV] Neutron emission of 3 **Thermal flux** maximum **PE/reflector materials** 2 10 ¹³ ′ Target Brilliance [s⁻¹cm⁻²sr⁻¹ $\frac{1\%\Delta\lambda}{\lambda}$ ⁻¹mAs⁻¹] Reflector 20 cm 10 ¹²

10 ¹¹

0

500

1000

Time [µs]

Thermal/cold neutron spectrum

thermic extraction

 10^{3}

"Pb" "Bor - PE"

"Be"

1500

cryogenic inset

Cold moderator dimensions

Instrumentation

neutron source

source area

Extraction / beam parameters

- Efficient beam extraction in combination with modern beam transport system
- Maximize accessible phase-space volume

Extraction channels

33/24

Instrumentation

Calculated instrument neutron flux

	Length	Resolution	Bandwidth	Flux	Frequency
	[m]			$[cm^{-2} s^{-1}]$	[Hz]
SANS	20.0	5% $\Delta\lambda/\lambda$	2.0-9.0 Å	9.4×10^7	24
Reflectometer	22.0	4% $\Delta\lambda/\lambda$	1.3-8.0 Å	1.7×10^{7}	24
Thermal powder diffr.	100.8	$\begin{array}{c} 0.0061 \text{-} 0.014 \\ \Delta d/d \end{array}$	0.75-2.4 Å	1.5 × 10 ⁸	24
Cold neutron imaging l	6.0	2.0-10.0%	1.0-15.0 Å	3.0 × 10 ⁸	96
Disordered material diffr.	61.0	0.016-0.028 $\Delta d/d$	0.5-1.2 Å	1.9 × 10 ⁷	96
Macromolecular diffr.	12.5		2.0-4.0 Å	4.0×10^7	96
Cold chopper spectr.	18.5		1.6-10.0 Å	3.4×10^5	96
Backscattering spectr.	102.5	3.0-20.0 µeV	6.05-6.0 Å	7.0×10^{6}	96
Epithermal neutron imaging	37.0		25-80 meV	5.0 × 10 ⁹	384
High energy chopper spectr.	28.5	4% <i>∆</i> Е/Е	0.5-2.5 Å	9.0×10^4	384
PDGNAA-2	21.0	50%	0.6 eV - 10 MeV	2.7 × 10 ⁷	384

ilich Centre for Neutron Science

HBS project

High current linear accelerator

- 100 mA, 70 MeV pulsed proton beam
- Variable frequency

Several target stations

- Optimize pulse structure (length, rep. rate)
- Optimize thermal spectrum

Every beam port serves only 1 Instrument

- Optimize cold source spectrum
- Optimize geometry
- Integrate neutron optics with beam port

Small shielding

- Neutron guide around cold source
- Chopper at <1 m from target

24 Hz 384 Hz **HBS CDR** instruments 96 Hz TDR in preparation JÜLICH

HIGH

SOURCE

www.fz-juelich.de/jcns/jcns-2/EN/Forschung/ High-Brilliance-Neutron-Source/ node.html

36/24

HBS Team

J. Baggemann Th. Brückel T. Cronert Q. Ding P.-E. Doege T. Gutberlet J. Li K. Lieutenant Z. Ma E. Mauerhofer M. Rimmler U. Rücker A. Schwab R. Similon M. Strothmann J. Voigt P. Zakalek

- Core group: design, verification, instrumentation

JÜLICH orschungszentrum

ZEA-1: Y. Bessler R. Hanslik R. Achten F. Löchte

- Engineering

IKP-4: O. Felden R. Gebel A. Lehrach

- Nuclear physics

GSX / HM GSI Helmholtzzentrum für Schwerionenforschung GmbH

W. Barth

- Accelerator

Nukleare Entsorgung RNTHAACHEN

- S. Böhm J.P. Dabruck R. Nabbi
- Nuclear simul.

TECHNISCHE UNIVERSITÄT DRESDEN C. Lange T. Langnickel Ch.Haberstroh M. Klaus S. Eisenhut

- AKR-2, liquid H₂

O. Meusel

- Accelerator

HBS Innovationpool Project

instrumen JCNS Instruments ZEA-1 @ FZJ **ESS Bilbao** Spain Engineering JÜLICH Forschungszentrum **ESS** IKP @FZJ CNR & Univ. Accelerator Roma & Milano Italv Consiglio Nazionale delle HZDR Ricerche HZDR Instruments HELMHOLTZ ZENTR LLB Saclav AP Univ. France Frankfurt RIKEN Accelerator **RIKEN** Wako **TU Dresden** RWTHAACHEN AKR & Cryo Japan **NET @ RWTH** Simulations Federal Ministry HIGH of Education JÜLICH and Research BRILLIANCE SOURCE Forschungszentrum h Centre for Neutron Science 37/24