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• Because in solids, positrons want to go where there aren’t any atoms!

• interstitial space

• vacancies!

• Happy additional property: positrons are pretty insensitive to most other stuff

• Hence: selective sensitivity to vacancy defects

• identification, concentration

• bulk crystals, thin films, any conductivity

• sensitivity to charge: negative, neutral (positive invisible)

• Somewhat (”second order”) sensitive to other interruptions of periodicity

• Fun in semiconductors: sensitivity to negative charge temperature-dependent!

• manipulation: illumination, bias, magnetic fields, etc.

WHY DO WE DO POSITRON ANNIHILATION
EXPERIMENTS?
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• By far most probable in solids: annihilation of the ”free” positron with an electron, 
both almost at rest. Produces two gamma photons of ~511 keV each, lifetime in the
range 100 – 500 ps

• Other possibility: formation of the e+ − e− bound state called positronium (Ps)

• 1S0 state (para-positronium, p-Ps): two gamma photons, lifetime of the bound state 125 ps

• 3S1 state (ortho-positronium, o-Ps): three (or more) gamma photons, lifetime of the bound
state 142 ns (in practice always so-called pick-off annihilation, lifetime 500 ps – 60 ns)

• Ps− (positron + two electrons): two gamma photons, lifetime 500 ps
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POSITRON-ELECTRON ANNIHILATION
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Stopping and 
thermalization are the
same as for energetic
electrons: ionization, 
band-to-band excitation, 
phonon emission

Timescale for stopping
and thermalization (at 
RT): a few picoseconds
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POSITRON-SOLID INTERACTIONS

Vacuum
Solid

thermal positrons

non-thermal positrons

inelastic scattering

annihilation

trapping at a defect

diffusionsurface state

positronium

diffraction

positronium



Faculty of Science 03/06/2021Accelerator laboratory / Filip Tuomisto 7

FAST VS. SLOW POSITRONS

A tunable monoenergetic positron 

beam can be used to measure a 

depth profile at distances 0 - 5 mm 

from the surface of a solid
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• Important: single-particle physics! (both in theory and in experiments)

• In a periodic lattice (perfect crystal), the thermalized positron will be in a Bloch-like
delocalized state

• In fact, this is the closest you can get to the textbook example of a Bloch state in real life 
(single particle in a static periodic potential)!

• Interruptions in the periodicity can lead to the localization (trapping) of the positron

• In particular, missing atoms (vacancies) are efficient traps!

• Competition between annihilation from the delocalized (”free”) state and trapping
(+subsequent annihilation from the trapped state)

• Can be modeled from first principles
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POSITRON STATE(S) IN A SOLID
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POSITRON LIFETIME EXPERIMENT

Lifetime 

Angular 

correlation 

180º ± 

Doppler broadening

22Na source

Sample

1.2745 MeV 511 keV ΔE

511 keV ± ΔE

±

)]([)()(/1
22

0 rrrr nnΨdcr  

Positron lifetime:





i

t

i
iItN
/

e)( 𝜏ave =
𝑖
𝐼𝑖𝜏𝑖



Faculty of Science

DOPPLER BROADENING EXPERIMENT
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Momentum distribution (Doppler & ACAR):

pL = 2 ΔE / c           (ΔE = ½ pL c)
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DOPPLER BROADENING EXPERIMENT
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2D ACAR VS. DOPPLER

Hubert Ceeh, PhD thesis, TUM, 2015

2D ACAR resolution



Faculty of Science

DOPPLER VS. ACAR

• Doppler: resolution not that good, but sufficient for defect studies. HPGe

detectors have high efficiency and can be placed close to the samples → 

high count rates, allows ”scanning”

• ACAR: excellent resolution, allows for, e.g., Fermi surface mapping in 

metals (also spin-dependence). Count rates low – traditional trade-off

between resolution and count rate
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IF YOU HAVE TROUBLE FALLING ASLEEP AT 
NIGHT…
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EXAMPLES
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ELECTRICAL COMPENSATION IN GaN

HNP grown single crystals of GaN

• O content ~1019 cm-3, n-type (O is a donor)

• Mg content ~1017 cm-3 in undoped

• Lightly doped: ~1019 cm-3

• Highly doped: ~1020 cm-3

• Fitting of the T-dependent trapping model (undoped):

• Negative Ga vacancies 7 × 1016 cm-3

• Negative ions 3 × 1017 cm-3 (Eb = 70 meV)

16

VGa

[dozens of studies]
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GaN: vacancies and BeGa

[F. Tuomisto et al., Phys. Rev. Lett. 119, 196404 (2017)]

+VN
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TYPE IIA NATURAL DIAMOND

[J.-M. Mäki et al., JPCM  21, 364216 (2009)]
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ILLUMINATION POWER DEPENDENCE

[J.-M. Mäki et al., PRL 107, 217403 (2011)]

Important: Fraction of negative clusters 

directly from experimental data
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OPTICAL TRANSIENT POSITRON 
SPECTROSCOPY!

Light pulse (5W 400 nm LED)

Measurement intervals

10 s

[J.-M. Mäki et al., PRL 107, 217403 (2011)]

[J.-M. Mäki et al., NJP 14, 035023 (2012)]

Benefits: optical constants of identified 

defects, self-consistent defect density 

determination (positron trapping coefficient 

not needed)
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PHOTOCONDUCTIVITY?

The free holes created by 

illumination by the same 

wavelengths disappear at 

the same rate as the 

negative charge leaves the 

vacancy clusters!
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• ion irradiation (e.g., 10 MeV
protons) at low T (down to 
~10 K)

• in situ positron lifetime
experiments

• heating up to RT
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FREEZE-IN OF RADIATION DAMAGE
[S. Väyrynen et al., NIMA 572, 978 (2007)]
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TUNGSTEN

180 ps: monovacancies

T behavior (left): dislocations

(not a surprise)

[J. Heikinheimo et al., APL Mater. 7, 021103 (2019)]
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DAMAGE RECOVERY
[J. Heikinheimo et al., APL Mater. 7, 021103 (2019)]

Vacancy migration barrier: 1.85 ± 0.05 eV

Vacancy production rate: 80 cm-1 (SRIM 

predicts ~1000 cm-1)

This means very efficient Frenkel pair

recombination, placing an upper bound for 

the SIA migration barrier of 0.1 eV

Recovery at 50-100 K: SIA migration

through release from impurities and 

structural defects, activation energies in 

the range 0.1 – 0.4 eV
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INTERFACES?
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• N-polar GaN/AlGaN high electron
mobility transistors

• This polarity is beneficial for 
enhancement-mode and highly scaled
transistors, and sensors

• A carrier trap forms at the bottom
AlGaN/GaN interface and causes
current collapse in unoptimized HEMT 
structure

• Can be overcome by doping (in 
addition to grading the Al content of) 
the AlGaN layer, but what is the nature
of this trap? 
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DEVICES: N-POLAR GaN/AlGaN HEMT-LIKE
STRUCTURES

[V. Prozheeva et al., Phys. Rev. Applied 13, 044034 (2020)]
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SHOULD POSITRONS CARE ABOUT THE
INTERFACE OF INTEREST?

undoped

[I. Makkonen et al., PRB 82, 041307 (2010)]

Yes!
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OPTIMIZE THE CAP THICKNESS

It would seem that with a 100 nm cap

it is possible to see some structure in 

the S-E curve!
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N-POLAR HEMT + Ga-POLAR TEST
STRUCTURE

Distinct difference

between undoped

and doped structure!

Ga-polar: nothing is 

seen, in line with

electric fields
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MORE TEST HETEROSTRUCTURES: MQW

AlGaN/GaN bottom

interface clearly

different from the

GaN/AlGaN ”top” 

interface!



Faculty of Science 04/06/2021Accelerator laboratory / Filip Tuomisto 31

HELP FROM COINCIDENCE DOPPLER?

Data taken from doped and undoped

HEMTs at 6-7 keV can be

represented (fairly closely) by a linear

combination of ”interface” from test

structure and VGa:

in the undoped structure the

”interface” produces 80% of the

signal while in the doped only 25-

30%.
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NATURE OF THE TRAP?

The trap at the interface cannot be an 

ionized donor – positrons would be

repelled. Possibly a neutral donor capable

of trapping holes?

”interface” data consistent with N 

vacancies at the interface!

Note that N vacancies will not trap 

positrons elsewhere in the structure!

Direct observation of N vacancies!

Effect in calculations requires 2 N 

vacancies at the interface – corresponds

to a sheet concentration of about 1014 cm-2
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SOFT MATTER: OPEN VOLUME ”POCKETS”

[P. Sane et al., JPCB 114, 1811 (2009).]

Positron and Positronium Chemistry: Eds. Y. C. Jean, P. E. Mallon, and D. M. Schrader, World Scientific 2003
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SURFACES?
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POSITRONS AT SURFACES: AUGER

35

Super surface sensitive

No secondary electron background
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POSITRONS AT SURFACES: RHEPD

36
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• Positron annihilation spectroscopy is a practical method for studying open volume
defects in semiconductors and metals (concentration range 1015 – 1019 cm-3)

• At its best in identifying and quantifying cation vacancies and vacancy-impurity
complexes in compound semiconductors (lifetime + Doppler + theory)

• Also: mono- and di-vacancies as well as vacancy-impurity complexes in elemental
semiconductors and metals, vacancy-solute complexes in alloys, etc.

• Sample state manipulation allows for determining the physical characteristics of the
identified defects (electrical activity, transition levels, migration barriers, etc.)

• Bulk crystals, thin films can be studied, conductivity (or not) not an issue

• Angular correlation experiments: Fermi surface analysis

• For surfaces, use ”fancy” methods such as PA-induced Auger or RHEPD

SUMMARY
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