Heavy Element Nucleosynthesis

RIUMF

Elements

Nicole Vassh **TRIUMF Theory Group TRIUMF Science Week**, Live from home :/ August 16, 2021

Burbidge, Burbidge, Fowler and Hoyle (B²FH) (1957) The solar composition can be decomposed into many processes → multiple nucleosynthesis sites enriched the solar system

Palm+14

Nuclear properties shape the solar abundances

Burbidge, Burbidge, Fowler, and Hoyle (B²FH) (1957)

Smith&Rehm 01

Nuclear properties shape the solar abundances

Burbidge, Burbidge, Fowler, and Hoyle (B²FH) (1957)

Smith&Rehm 01

Some candidate sites for *r*-process element production

Collapsar disk winds

Collapsar SNe lc BL Rate ~ 100 Gpc⁻³ yr⁻¹ LGRB <mark>~10-30</mark> s ~10^{52.5} erg M_{NI}~0.3 M M.~1 M. $Y_{2} = 0.5$ $\dot{M}_{\rm fb}$ $\dot{M}_{\rm fb}$ Y_~0.1-0.3

Magneto-rotationally driven (MHD) supernovae

Primordial black hole + neutron star

Credit: APS/Alan Stonebraker, via *Physics*

Siegel+18; also McLaughlin&Surman 05, Miller+19

Winteler+12; also Mosta+17

Fuller+17

Rapidly spinning

neutron star

The GW170817 binary neutron star merger

Over ~70 observing teams (~1/3 of the worldwide astronomical community) followed up on the merger event!

Observed in UV, infrared, radio, γ-ray, X-ray, and optical

Lanthanide and/or actinide mass fraction \uparrow , opacity \uparrow , longer duration kilonova light curve shifted toward infrared

10 ^ 2/s 10/s

1/s

neutrons

Marchetto+15

Zhu, Lund+21 (including NV) (ApJ 906, 94)

A modern approach to exploit the interplay between nuclear properties and astrophysical outcomes

Nuclear structure (shell closures, deformation...) affects abundances

We have mass data to inform us but don't yet know masses of some important neutron-rich nuclei

Nuclear masses are key inputs for reaction and decay rates

MCMC results in *similar* vs *distinct* astrophysical outflows

Neutron star merger accretion disk winds with: Hot = extended $(n,\gamma) \leftrightarrows (\gamma,n)$ equilibrium Cold = photodissociation falls out early

Vassh+21 (ApJ 907, 98); Orford,Vassh+18 (Phys. Rev. Lett. 120, 262702)

MCMC results in *similar* vs *distinct* astrophysical outflows

Additional neutron capture processes hidden in the solar abundances?

r-process (rapid neutron capture) = Solar – *s*-process (slow neutron capture) – *i*-process (intermediate neutron capture) – ...?

Impact of neutron capture rates

Impact of neutron capture rates

Experiment + Fundamental Theory

Multi-messenger (and multi-disciplinary) nuclear astrophysics

Astrophysical Observables

Solar and Stellar Abundances

Gravitational Waves

Electromagnetic Emission

Galactic Origins