
RIB Target and lon Source Development at TRIUMF

Carla Babcock for the Targets and Ion Sources Dept.

Science Week 2021

RIB Development Strategy

 Beam development is carried out by the Targets and Ion Sources group and Beam Delivery group on a regular basis

All development work is done for user benefit with the end goal of improving science output

- Development efforts must be balanced:
 - Short term developments
 - Long term projects
 - Ongoing beam delivery requirements

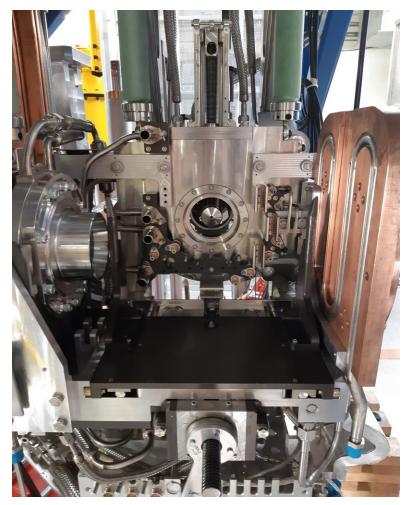
User needs are top priority

- Feedback from users highlights priorities:
 - Increase the types of beams
 - Increase the quality of beams delivered (intensity/purity)
 - Increase the availability of beam time
 - Increase the flexibility of ISAC
 - Increase the reliability of ISAC

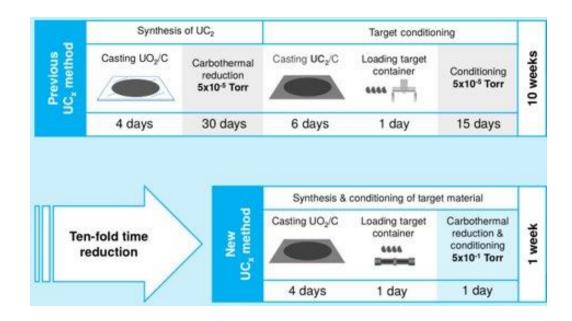
- User feedback highlights priorities:
 - Increase the types of beams
 - Increase the quality of beams delivered (intensity/purity)
 - Increase the availability of beam time
 - Increase the flexibility of ISAC
 - Increase the reliability of ISAC

New yields of Sn and Sb from the laser ion source team

- User feedback highlights priorities:
 - Increase the types of beams
 - Increase the quality of beams delivered (intensity/purity)
 - Increase the availability of beam time
 - Increase the flexibility of ISAC
 - Increase the reliability of ISAC


Graphite target designed to increase 7Be yields successfully run last year as part of PhD of Marla Cervantes.

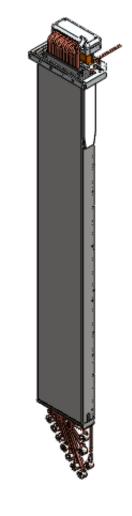
(Image: Marla Cervantes)



- User feedback highlights priorities:
 - Increase the types of beams
 - Increase the quality of beams delivered (intensity/purity)
 - Increase the availability of beam time
 - Increase the flexibility of ISAC
 - Increase the reliability of ISAC

ARIEL will help accommodate different schedule needs and provide overall more beam time

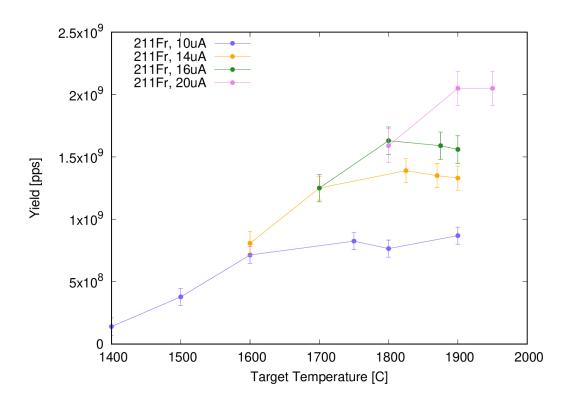
- User feedback highlights priorities:
 - Increase the types of beams
 - Increase the quality of beams delivered (intensity/purity)
 - Increase the availability of beam time
 - Increase the flexibility of ISAC
 - Increase the reliability of ISAC



The transition to a more efficient method of UCx production increased the number of UCx targets ISAC can run per year (Image: Marla Cervantes)

- User feedback highlights priorities:
 - Increase the types of beams
 - Increase the quality of beams delivered (intensity/purity)
 - Increase the availability of beam time
 - Increase the flexibility of ISAC
 - Increase the reliability of ISAC

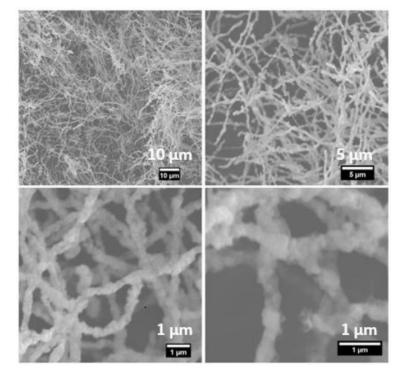
Refurbishment of TM3 will put three modules into rotation, making recovery from failures faster and beam delivery more reliable



Opportunistic and Long-term Developments

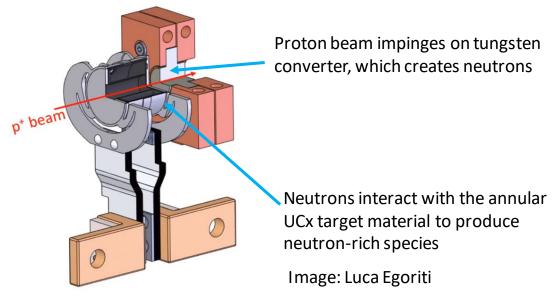
- Can categorize projects into opportunistic and long-term developments
 - Opportunistic development based on what seems feasible and fits into the established schedule with minimal impact to other users.
 - Long-term development often part of a student thesis, requiring significant offline work and system upgrades.

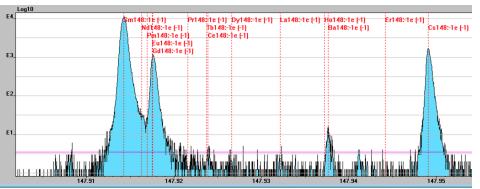
Opportunistic developments


- Opportunistic development recent examples:
 - Tests to determine how UCx targets react to higher proton beam intensity for better yields
 - Better yields of elements using rotating beam on various targets

Tests on a UCx target at > 10 uA proton beam current, leading to regular operation between 10 and 20 uA at ISAC

Long-term developments


- Long term development project recent examples:
 - The nano-SiC target whose material structure was developed at TRIUMF, opening the door for other nanometric fibrous target materials.



SEM images of nano-SiC material for MSc of John Wong (Image: John Wong)

Long term developments

- Long term development project recent examples:
 - The proton-to-neutron converter target, which was successfully prototyped and tested in June, working towards improved yields of neutron-rich Cs and Rb



148Cs seen using the MRToF and p2n target in June (Image: TITAN group)

Behind the scenes work to benefit users

- Significant behind the scenes work is done to help meet user requests for improvements:
 - Systematic studies of the ISAC
 FEBIAD source by PhD
 student Fernando Maldonado
 - CHI test stand for target release studies by PhD student Luca Egoriti
 - Tests of pulsed proton beam on target by PhD student Aurelia Laxdal

FEBIAD target (Image: Fernando Maldonado)

Behind the scenes work to benefit users

- Efforts toward improvements of modules, targets and infrastructure increases reliability and availability:
 - Ongoing improvements to the modules allow us to increase our HV limits incrementally
 - Increase in refurbishment activities due to completion of North Hot Cell and Safe Module Parking

Spark captured during HV conditioning (Image: Alexander Shkuratoff)

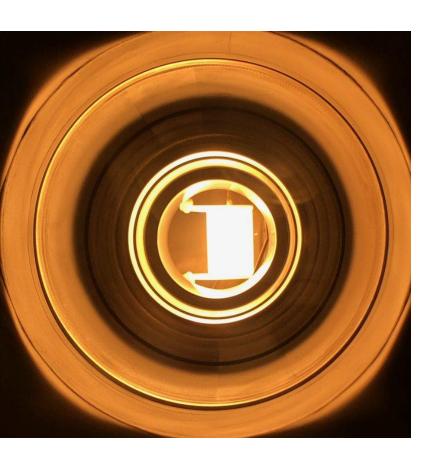
Communication channels for requests

• Standard communication channels for beam development requests and information:

Science Week

August 16-20, 2021

2021


- meetings like Science Week
- user newsletter
- Lols
- In addition you can now email the beam development team at <u>RIBdev@triumf.ca</u>

for more information, to discuss ideas, to make requests and to collaborate.

Communication channels for requests

- Feedback from users results in development where possible
 - For example, the new UCx fabrication process increased the number of UCx targets available, which was a request based on conversations with users
- Development priorities are set based on personnel available, finances available, feasibility of the work and research priorities in the group

Strategy for the future

- Moving towards systematic studies for more reliable results
 - Yield program has been run very systematically, now including other aspects such as increased proton limit tests, HV tests, etc.
- Focus on continuous improvements to reliability and betterbeams through new target materials/new methods
- ARIEL capabilities will increase beam availability and development opportunities

Thank you for your attention