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Evolution of the Universe
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Neutrino Oscillation Formalism

August 17, 2021                                              Hyper-Kamiokande: Precision Neutrino Experiment Techniques - Patrick de Perio                                                          3

Produced as 
weak/flavour state

Propagate as mass states with relative phases

Interact as 
weak/flavour state



Neutrino Oscillation Formalism
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Neutrino Knowns and Unknowns
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E. Lisi (TAUP2019)

KNOWNS (~1𝜎 accuracy)

Δm2 / eV2 = 2.48 x 10-3 (1.3%)
𝛿m2 / eV2 = 7.34 x 10-3 (2.2%)
sin2θ

13
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sin2θ
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23
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UNKNOWNS (>1𝜎 hints)
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Building a Neutrino Beam (in Japan)
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𝜈𝜇  or  𝜈𝜇 P
acific O

cean

Japan Proton Accelerator Research Complex & Neutrino Beamline

Characterize ν beam & 
constrain uncertainties 

ν production Hadron 
production

Measure oscillated 
ν beam



Water Cherenkov Detector Principles
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PhysicsOpenLab.org

ν l-

n p

W+

CCQE signal

https://physicsopenlab.org/2016/04/24/diy-cherenkov-detector/


Generations of Kamiokande
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Talk Overview: Next Generation Experiment
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● Bigger and more sensitive than ever
○ Fiducial mass 8x Super-K
○ J-PARC beam 2.5x more powerful 

→ Neutrino rates 20x T2K

● Precise systematic understanding becomes 
critical to the % level

○ New near detectors and photon detectors
○ New calibration and event reconstruction techniques
○ New supporting external data from auxiliary experiments

Hyper-Kamiokande New Near Detectors J-PARC
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Intermediate Water Cherenkov Detector (IWCD)
Novel off-axis spanning near 
detector for Hyper-K
● Controlled variation of ν energy 

spectrum via 2-body π decay 
kinematics

○ Provides handle on far detector 
observables’ dependence on ν energy

● Precise neutrino-nucleus interaction 
cross-section measurements on 
water

○ Confronting theoretical modeling

New photosensor (mPMT) development

8” PMT mPMT

, 3”

~8 m

~6
 m



Machine Learning Event Reconstruction
● TRIUMF and Scientific Computing group leading the 

Water Cherenkov Machine Learning (WatChMaL) consortium
○ Towards a unified platform and knowledge base across many such detectors

● Improved particle classification and regression/reconstruction
● Massive processing speed-up enables multitudes of 

simulations for detector design and systematics studies
○ ~1 event/minute → ~100000 events/minute
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e vs π0 Rejection

ResNet

fiTQun
ResNet (AUC=0.65)

fiTQun (AUC=0.54)

γ

Electron energy <1 GeV reconstruction

ResNet
fiTQun

νe CCQE signal

NCπ0 NCγ
backgroundsIWCD examples:

π0 decay

Pair production



Multi-Ring Reconstruction in the Future
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Goal:

First attempt on 
π0 decay events 
in IWCD: 
~80% accuracy

● Panoptic segmentation: separating 
and identifying overlapping rings

● Towards improving multi-ring & 
multi-GeV event classification and 
reconstruction

○ ν mass ordering, ντ appearance, δCP

Observed charge

UBC Capstone



Higher detail of information 
from ML and precision 
measurement of CP 
violation requires <1% level 
understanding of detector

Water Cherenkov Detector Systematics
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RI
Source

Timing

Cherenkov
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PMT angular response, SPE gain
QE, timing, dark noise

Geometry (detector and 
calibration devices)

Water quality (light 
scattering, absorption)

PMT and wall reflectivity

Residual magnetic fields

γ



Novel Detector Geometry Calibration
● First underwater survey of 

Super-K detector geometry
● Challenging 

photogrammetry analysis 
ongoing
○ Demonstrated with a ring of 

barrel PMTs

● Developing new systems for 
Hyper-K and IWCD
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UBC Capstone
TRIUMF SciTech



Precise and Comprehensive PMT Characterization
● Uncertainties in PMT response 

is a major systematic in 
water Cherenkov detectors

● (Re)Building a photosensor test 
Facility (PTF) at TRIUMF for 
Super-K and Hyper-K/IWCD
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+100 mG -100 mG

Magnetic field and PMT orientation survey throughout Super-K

Water purification system

Electronics racks

Motor gantries with encoders

Helmholtz Coils

Accelerometers & 
Temperature Sensors

Super-K PMT

Renovated MHESA Dark Room

TRIUMF SciTech



● Prototype detector for beam test at CERN in 2023

● mPMT pilot run and test-bed for precision calibration and ML
○ Opportunity to improve systems prior to IWCD and Hyper-K

● Well-understood p, e, π±, μ± particle beam from 140-1200 MeV/c
○ Control samples to constrain neutrino experiment modeling, 

e.g. Detector response: Cherenkov light emission; π± re-interactions in water
○ Immediate impact to existing experiments (T2K, Super-K)

The Water Cherenkov Test Experiment (WCTE)
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Summary
● Broad physics with many ν 

sources and proton decay in 
Super-K and Hyper-K

● New developments towards 
realizing maximal sensitivity

○ Photosensors (mPMTs)
○ Detector calibration

■ Photogrammetry
■ Photosensor characterization

○ Machine learning 
event reconstruction

● Near term auxiliary projects 
to enhance all of the above: 

○ e.g. WCTE @ CERN
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Canadian Hyper-K Membership
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Rich Science with Hyper-Kamiokande   
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Multi-Messenger:
Supernova, GW, …

Solar NeutrinosProton Decay

Dark Matter
Atmospheric 
Neutrinos

Accelerator Neutrinos
Far Detector

Design report: arXiv:1805.04163

https://arxiv.org/abs/1805.04163


Rich Science with Hyper-Kamiokande   Design report: arXiv:1805.04163
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Multi-Messenger
[arXiv:2101.05269]

Solar NeutrinosProton Decay

Dark Matter
Atmospheric 
Neutrinos

Accelerator Neutrinos

Supernova Burst

Unknown MO

https://arxiv.org/abs/1805.04163
https://arxiv.org/abs/2101.05269


Neutrino Sources
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T2K CP Violation Constraints
● 2019 analysis:

○ Disfavored δCP= 0 at 3σ
○ Disfavored ΙΟ at 1σ

● 2020 analysis slightly looser constraints
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Nature 580 (2020) 7803
arXiv:2101.03779                                             Τ2Κ Run 1-10 Preliminary

3σ1σ

3σ

https://www.nature.com/articles/s41586-020-2177-0
https://arxiv.org/abs/2101.03779


Proton Beam Monitoring: Optical Transition Radiation
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OTR
● Crucial proton beam 

monitoring and ν beam 
constraints

● New OTR installation 
in spring 2022 for 
T2K-II era and beyond

○ Improving calibration 
systems

○ New simulations
○ Stress testing new foils 

Off-axis beam



Hadron Production for Neutrino Flux Modeling: EMPHATIC
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● Experiment to Measure the Production of Hadrons At a Testbeam In Chicagoland

● Constraints on beam and atmospheric ν flux predictions
○ For T2K, SK, HK, NOνA, DUNE

● At Fermilab Test Beam Facility 
○ 2018: Pilot run, paper finished 

collaboration review
○ 2020: Phase I (limited acceptance 

150 mrad) → postponed to fall 2021
○ 2022: Phase II, 

full acceptance 
400 mrad

Silicon strip 
detectors

Magnet

Target

Multi-anode 
PMT

Multigap 
RPCs

Lead-glass 
calorimeter

Dark box

Aerogel

ARICH

arXiv:1912.08841 [hep-ex]

π and Κ elastic and QΕ interactions (< 10 GeV/c)
Important systematic uncertainty

https://arxiv.org/abs/1912.08841


The IWCD detector

25

Off-axis spanning detector

ν energy spectrum depends on angle off-axis 
to the neutrino beam

Far detector @ 2.5° for peak at ~600 MeV

Moving IWCD varies angle, allowing 
measurements at different energies

Linear combinations allows mimicking mono- 
chromatic beam or far-detector spectrum



T2K-SK Multi-Ring Datasets for Future Analyses
● Second dominant interaction

channel: resonant 1π production
● Expected to improve oscillation 

parameter measurements
○ E.g. ~12% increase in νe signal statistics

● New BDT pushing the limits of traditional 
likelihood reconstruction algorithm
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Systematic Uncertainties
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● Extrapolation of constraint from 
near detector isn’t perfect - neutrino 
spectrum is different because no 
oscillation

● Additional errors from modeling 
non-quasi- elastic scattering (pion 
production, multi-nucleon knockout

● Electron (anti)neutrino cross 
section is not constrained at near 
detector with 99% muon 
(anti)neutrino beam

● Neutral current backgrounds can 
fake electron (anti)neutrino 
candidates

   

Aim to reduce total error to <3% for Hyper-K 



Impact of Systematic Detector Uncertainties
● Energy scale control samples in Super-K show 

residual 2% MC/data discrepancy
○ Assigned as systematic error in ν oscillation analysis

● Degeneracy observed with CP violation 
parameter, δCP

○ Need to understand detector to the <1% level
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https://arxiv.org/abs/1901.03230


Neutrino Flux Spectra
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Kate Scholberg (Duke), TIPP 2021

https://indico.cern.ch/event/981823/contributions/4328853/


Neutrino detector masses and sensitive energy ranges
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Kate Scholberg (Duke), TIPP 2021

https://indico.cern.ch/event/981823/contributions/4328853/


Neutrino Oscillation L/E Scales

August 17, 2021                                              Hyper-Kamiokande: Precision Neutrino Experiment Techniques - Patrick de Perio                                                          31



Hyper-K Expected Event Rates
● Aim to collect 

~2000 νe and ν̅e 
appearance events 
in 10 years

○ Will measure CPV 
with 3% statistical 
uncertainty!

● Controlling 
systematics 
becomes critical!
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Hyper-K Long-Baseline Physics
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Hyper-K Proton Decay
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Hyper-K



Supernova Burst in Hyper-K
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Hyper-K Supernova Relic Neutrinos
SRN can be observed by HK in 10y with ~70±17 events. It is > 4σ for SRN signal.
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Hyper-K Solar Neutrinos
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No spallation

Mozumi

Tochibora

hep neutrino 
sensitivity

Spectrum upturn 
sensitivity

4.5 MeV threshold

3.5 MeV thresholdHyper-K

arXiv:1507.05287

https://arxiv.org/pdf/1507.05287.pdf


Hyper-K Collaboration Membership
● 19 countries, 

93 institutes, 
~450 people 
as of May 2021, 
growing
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Hyper-K Schedule
Finish all preparations within ~4.5 years from now for detector installation
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N. Prouse, TRIUMF

CNN architecture

40
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P(μ±)P(e±) P(π0) P(γ)

1. Convolution over mPMTs 2. Standard CNN convolutions & down-samples

3. Fully connected 
neural network

Full cylinder of mPMTs is unwrapped onto flat image
● One pixel per multi-PMT
● Charge (& time) of 19 PMTs per mPMT
● No special treatment at barrel / end-cap boundary

○ Alternative projections from cylinder to grid have also been explored
Network based on ResNet-18 CNN architecture[arXiv:1512.03385]

19 for charge
+19 for time

1x1 pixel convolution over 
the mPMT channels



N. Prouse, TRIUMF

t q x y z

t q x y z

t q x y z

PointNet architecture
PointNet is designed to work on ‘point clouds’ rather 
than images

● Each hit PMT is a ‘point’ with time, charge & 
position, not fixed to grid

○ CNN learns translation-invariant functions on 
image

○ PointNet learns symmetric functions on point 
clouds

■ Symmetric: ordering of points cannot affect 
outcome

● Convolution-like operations act on each point’s 
charge, time and position

● Information flows between points by learning 
global transformations applied to all points

● Can apply to any detector geometry
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N. Prouse, TRIUMF

Comparison of ResNet to traditional maximum-likelihood method (fiTQun)

Classification results

● νμ beam produces mostly μ, need rejection 
factor of 1000 for νe measurement 

● Increased e- / μ discrimination across energies

● π0 is significant background to e- signal
● Increased e- / π0 discrimination, particularly at 

challenging energies

e- efficiency at 5% π0 mis-ID rate e- efficiency at 0.1% μ mis-ID rate 
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N. Prouse, TRIUMF

Position, direction, energy 
reconstruction

Similar ResNet architecture as used for classification
● Output reconstructed quantities instead of classification variables
● Use Huber loss to minimise true-reconstructed residuals
● ResNet is outperforming fiTQun at energy and direction reconstruction
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N. Prouse, TRIUMF

Position, direction, energy 
reconstruction ● ResNet is 

outperforming 
fiTQun overall
at position 
reconstruction 
○ Better in 

longitudinal 
direction
(along 
direction of 
particle track)

○ But worse in 
transverse 
direction
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