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WHY STUDY ANTIMATTER AND ANTIHYDROGEN?

Study Matter-antimatter asymmetry

Why is the universe filled only with matter?

Use antihydrogen to search for CPT violations

Antiprotons, positrons and hydrogen are well understood

A separate check on high energy studies

Study the atomic transitions

T

» Measured already to high precision in hydrogen



Antihydrogen Laser PHysics Apparatus
50 people, 8 countries

Large Canadian presence

“UBC, SFU, UofC, York, TRIUMF

At CERN (to be close to the antiprotons)



LASER COOLING

Ubiquitous in atomic physics Being able to laser cool antihydrogen is o
game-changing breakthrough in the study

Necessary for high precision of antimatter

spectroscopy
High precision anti-atom spectroscopy will

Helpful for high precision gravitational ] T [

measurements



Breit Rabi diagram for hydrogen

LASER COOLING
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Drive a detuned optical transition
* Doppler cooling

Not many choices in hydrogen

" Energy level difference between ground
and first excited state is large

N
zc
S
>
<)
e
)
c
(7}
[
=
k!
[}
o

[-172, ) 1S4

172, ft) 1S,
[+1/2, 1) 18,

Lyman alpha transition (Nature 201 8)
Lamb shift (Nature 2020)

[+172, ) 18,

0.5 1.0
Magnetic field (T)




. Solenoid Magnets Heat-Shielded OVC
Physical Supports - Liquid Helum Spaces
. Vacuum Pumps and Components - Annihilation Detectors
Ultra-High Vacuum (UHV) Spaces - Electrodes under UHV
. Outer Vacuum Chamber (OVC)

ALPHA-g
Atom Traps %

Antiprotons Atom Trap

Positrons
sitrons collected from

Antiproton
Catching Trap




. Solenoid Magnets Heat-Shielded OVC
Physical Supports - Liquid Helum Spaces
. Vacuum Pumps and Components - Annihilation Detectors

Ultra-High Vacuum (UHV) Spaces - Electrodes under UHV
. Outer Vacuum Chamber (OVC)

Atom Traps %

Antiprotons Atom Trap Positrons

Antiproton
atching Trap

Antiprotons from

Positron
Accumulator




. Solenoid Magnets Heat-Shielded OVC
Physical Supports - Liquid Helum Spaces
. Vacuum Pumps and Components - Annihilation Detectors
Ultra-High Vacuum (UHV) Spaces - Electrodes under UHV
. Outer Vacuum Chamber (OVC)

—Nﬁﬁlwu ALPHA-g

Atom Traps %

access

Antiprotons Positrons

Antiproton
Catching Trap

1 ‘-
iy

-~
:

=

Positron
Accumulator

>
6.70m 5.75m




. Solenoid Magnets Heat-Shielded OVC
Physical Supports - Liquid Helwum Spaces
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Ultra-High Vacuum (UHV) Spaces . Electrodes under UHV
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MAKING ANTIHYDROGEN
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Penning trap for non-neutral
plasma manipulations
Antiprotons and positrons
simultaneously held

The positrons are
evaporatively cooled, then
brough into contact with
antiprotons

Can “reliably” produce
samples >1000 antiatoms
Multiple production steps
repeated

Lifetime for antihydrogen in
the trap very long (>60 hours)
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121NM LASER

365nm light from laser lab

Alignment Path

121nm VUV laser path

ALPHA Atom Trap

Positrons

THG Gas Cell

/-

Antiprotons

121nm
detection

Short wavelength light
is hard to produce at
high powersl!

We need it for very
long runs (>10 hours)

The ALPHA trap is
NOT in a laser lab



|UNFORESEEN PROBLEMS rong Runs

Timing of events must be very precise

After * Two different clocks in experiment

Before
Time Difference (SIS - VF48) vs SIS Time
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" The laser pulse and event times
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must be accurate to within 1 us
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" Existing system was never tested at
this level

" Very satisfying to fix
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RESULTS
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* We see a change in the
spectrum line-width

LASER COOLING

Lineshape
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Experiment

Simulation
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LASER COOLING

Lineshape
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—— Stack and cool
Cooling

——— No laser

—— Heating

* We see a change in the
spectrum line-width

* Timing of the laser pulse and
the detector event give us a
time-of-flight
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* We see a change in the
spectrum line-width

* Timing of the laser pulse and
LAS ER CO 0 |- I N G the detector event give us a
time-of-flight

Lineshape

° . .
R, Computer simulations of laser

Cooling - . :
— No laser cooling process qualitatively

—— Heating match experimental data
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LASER COOLING

A set of laser cooled 243nm
4 Run A (cooling) spectroscopy runs were performed
o Run B (no cooling) . 5

using the same experimental
procedure as the 121nm runs

The FWHM decreased by about a
factor or four
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We estimate a change in the kinetic
energy by a factor of 16
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FUTURE STUDIES OF More than we ever
ANTIHYDROGEN thought possible

Each year we get better and better at
making antihydrogen

ALPHAg

= Gravitational measurement

ALPHA3

" Laser and metrology upgrade

HAICU (Hydrogen-Anﬁhydrogen Infrastructure at
Canadian Universi’ries)

= Anti-atom fountain and interferometer
Hydrogen as a proxy for antihydrogen

Exciting future for study of antihydrogen
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