

MACHINE LEARNING FOR PION IDENTIFICATION AND ENERGY CALIBRATION WITH ATLAS DETECTOR ATL-PHYS-PUB-2020-018

DILIA MARÍA PORTILLO, ALISON LISTER,MAX SWIATLOWSKI, WOJTEK FEDORKO, RUSSELL BATE

> 17-08-2021 TRIUMF SCIENCE WEEK 2021

Overview

Hadronic Calibration in ATLAS

- Hadronic showers are mostly composed of pions
 - π^0 : Captured by the **electromagnetic** calorimeter

 $\circ \pi^{\pm}$: Require the dense material in the **hadronic** calorimeter to be stopped

- Baseline hadronic reconstruction in ATLAS uses clusters of calorimeter cells
- Currently, clusters are calibrated in two steps:
 - Classified as electromagnetic or hadronic calculating the EM probability *P*^{EM}_{clus;}
 Calibration of its energy

-10⁻²

-10⁻¹

-10° 6

0.2

-0.05

-0.10

-0.15

-0.20

-0.1

0.0

0.1

Can we use deep learning to improve these techniques?

 Neural Networks trained on calorimeter images can classify clusters and predict their energies
Studied DNNs, CNNs, and DenseNet

Cluster identification performance

 \circ The ML techniques all do an excellent job of distinguishing π^0 from π^\pm showers

• Dramatic improvements compared to the current classification method using $\mathscr{P}_{\mathsf{clus}}^{\mathsf{EM}}$

7

Pion Energy Calibration

- After classifying a cluster, need to calibrate its energy
- Energy regression goal: Correctly predict the true energy deposited in the cluster.
 - Quantified by measuring the cluster **energy response**: $R = \frac{E^{\text{reco}}}{E^{\text{truth}}}$ that should be ~ 1

Regression performance for charged pions

Outlook

• Promising results for pion classification and energy calibration with deep-learning!

Looking forward studying more complex scenarios:

- First look at the performance with jets
 - π^+ , π^- and π^0 mixed in a 1:1:1 ratio
 - Roughly correspond to the expected distribution in jets

- Another handy way to represent energy deposits is as a point-cloud
 - Points contains cell info & cluster-level info.
 - Allows for combining signals from the inner detector (tracks) and from calorimeter (clusters)

