

Beamline Tuning with Reinforcement Learning

David Wang, Paul Jung, Olivier Shelbaya, Spencer Kiy, Wojtek Fedorko, Rick Baartman, Oliver Kester

> Discovery, accelerated

2021-08-17

10

OLIS Beamline

- Starting point for Al-tuning
 - Low current
 - Non-radioactive
- Manual tuning by operators takes many hours, taking away from research beam time
- Goal for reinforcement learning agent:
 - Optimize beam transmission
 - Offset unknown misalignments
 - Improve speed and accuracy of tuning

Source: Beam Physics Note TRI-BN-20-13R, Olivier Shelbaya

Reinforcement learning

- Challenges of beamline environment:
 - Partially observed (only a few measurable spots)
 - Continuous and large action spaces
- Proposed Algorithm: Recurrent Deep Deterministic Policy Gradients (RDPG)
 - Actor-critic algorithm utilizing actor and critic networks to optimize agent learning
 - Long Short-term Memory (LSTM) networks to operate in partially observed environment

 o_t : observation

for example, current measured at 2 faraday cups

 a_t : predicted action

for example, angles to rotate each steerer

- l: memory length of LSTM actor
- h, c: hidden states of LSTM actor

Current Progress and Next Steps

- Beamline simulation
 - Approximate as a Gaussian particle distribution
 - Analyze in only 1 dimension
 - Use centroid (solid line) and envelope (dotted line) to determine transmission
- Current model trains well on simulation
 - Using realistic observations but artificial reward function
- Plans:
 - More realistic simulations of measurement and reward
 - Develop strategy and tools for real beamline tuning
 - Extend to ISAC and other beamlines

