% TRIUMF

Results in Scientific Computing

Lightning talks

Discovery, accelerated

1

Calorimetric Particle Identification at NA62

Main goal: Study the rare $\mathbf{K} \rightarrow \boldsymbol{\pi v v}$ decay Probe for new physics

Kaon decay-in-flight: Main backgrounds $_{\times}$ are the common kaon decay modes (K $\rightarrow\mu\nu$, K $\rightarrow\pi\pi$, etc.)

Multiple handles:

- Event kinematics,
- K/π timing O(100 ps),
- Track multiplicity,
- μ/γ vetos,
- Particle identification.

 $egin{aligned} \mathcal{K}^+ &
ightarrow \ \mu^+
u_\mu \ (\mathcal{B} pprox 0.64) \ &\downarrow \mathrm{mis} - \mathrm{id} \ \end{aligned} \ \mathcal{K}^+ &
ightarrow \ \pi^+
u \overline{
u} \ (\mathcal{B} pprox 10^{-10}) \end{aligned}$

$$\mathcal{B}_{\text{exp.}} = \left(10.6^{+4.0}_{-3.4} \Big|_{\text{stat.}} \pm 0.9_{\text{syst.}} \right) \times 10^{-11}$$
[NA62 Collaboration, 21']

Particle identification systems:

RICH, MUV3, and calorimeters (LKr, MUV1 and MUV2) Overall Muon rejection > 10^7

CNN-Based Approach for "CaloPID"

Focus on three calorimeters:

LKr: Electromagnetic calo. •

Track

MUV1 & MUV2: Hardronic calo •

No depth information, the 3D shower is projected on a 2D plane by the readout.

Direct correspondence with a 5-channel image

y

Data driven approach, training, validation and testing samples selected directly from the data. Independent test sample (*minimum bias*) used for the final evaluation.

Significant Improvement of the μ/π ID

Pion acceptance can be increased from **72 % to 92 %** over the 15 to 50 GeV/*c* (muon mis-id 10⁻⁵)

MACHINE LEARNING FOR PION IDENTIFICATION AND ENERGY CALIBRATION WITH ATLAS DETECTOR ATL-PHYS-PUB-2020-018

DILIA MARÍA PORTILLO, ALISON LISTER,MAX SWIATLOWSKI, WOJTEK FEDORKO, RUSSELL BATE

> 17-08-2021 TRIUMF SCIENCE WEEK 2021

Overview

Hadronic Calibration in ATLAS

- Hadronic showers are mostly composed of pions
 - π^0 : Captured by the **electromagnetic** calorimeter

 $\circ \pi^{\pm}$: Require the dense material in the **hadronic** calorimeter to be stopped

- Baseline hadronic reconstruction in ATLAS uses clusters of calorimeter cells
- Currently, clusters are calibrated in two steps:
 - Classified as electromagnetic or hadronic calculating the EM probability *P*^{EM}_{clus;}
 Calibration of its energy

-0.15

-0.20

-0.1

0.0

0.1

-10⁻¹

-10° 6

0.2

Can we use deep learning to improve these techniques?

 Neural Networks trained on calorimeter images can classify clusters and predict their energies
 Studied DNNs, CNNs, and DenseNet

Cluster identification performance

 $_{\circ}$ The ML techniques all do an excellent job of distinguishing π^{0} from π^{\pm} showers

• Dramatic improvements compared to the current classification method using $\mathscr{P}_{\mathsf{clus}}^{\mathsf{EM}}$

Pion Energy Calibration

- After classifying a cluster, need to calibrate its energy
- Energy regression goal: Correctly predict the true energy deposited in the cluster.
 - Quantified by measuring the cluster **energy response**: $R = \frac{E^{\text{reco}}}{E^{\text{truth}}}$ that should be ~ 1

Regression performance for charged pions

Outlook

• Promising results for pion classification and energy calibration with deep-learning!

Looking forward studying more complex scenarios:

- First look at the performance with jets
 - \circ π^+ , π^- and π^0 mixed in a 1:1:1 ratio
 - Roughly correspond to the expected distribution in jets

- Another handy way to represent energy deposits is as a point-cloud
 - Points contains cell info & cluster-level info.
 - Allows for combining signals from the inner detector (tracks) and from calorimeter (clusters)

9

Beamline Tuning with Reinforcement Learning

David Wang, Paul Jung, Olivier Shelbaya, Spencer Kiy, Wojtek Fedorko, Rick Baartman, Oliver Kester

> Discovery, accelerated

10

OLIS Beamline

- Starting point for AI-tuning
 - Low current
 - Non-radioactive
- Manual tuning by operators takes many hours, taking away from research beam time
- Goal for reinforcement learning agent:
 - Optimize beam transmission
 - Offset unknown misalignments
 - Improve speed and accuracy of tuning

Source: Beam Physics Note TRI-BN-20-13R, Olivier Shelbaya

Reinforcement learning

- Challenges of beamline environment:
 - Partially observed (only a few measurable spots)
 - Continuous and large action spaces
- Proposed Algorithm: Recurrent Deep Deterministic Policy Gradients (RDPG)
 - Actor-critic algorithm utilizing actor and critic networks to optimize agent learning
 - Long Short-term Memory (LSTM) networks to operate in partially observed environment

 o_t : observation

for example, current measured at 2 faraday cups

 a_t : predicted action

for example, angles to rotate each steerer

- l: memory length of LSTM actor
- h, c: hidden states of LSTM actor

Current Progress and Next Steps

- Beamline simulation
 - Approximate as a Gaussian particle distribution
 - Analyze in only 1 dimension
 - Use centroid (solid line) and envelope (dotted line) to determine transmission
- Current model trains well on simulation
 - Using realistic observations but artificial reward function
- Plans:
 - More realistic simulations of measurement and reward
 - Develop strategy and tools for real beamline tuning
 - Extend to ISAC and other beamlines

% TRIUMF

Quantum Computing for Nuclear Physics: Improving Hamiltonian Encodings with the Gray Code

Peter Gysbers O. Di Matteo, A. McCoy, T. Miyagi, R. Woloshyn, P. Navrátil

Phys. Rev. A **103**, 042405 (2021) arXiv: 2008.05012 Science Week – Aug 17, 2021

14

The Nuclear Many-Body Problem

General goal: solve the Schrodinger equation

$$E |\Psi\rangle = H |\Psi\rangle$$

This project: the deuteron

Method: solve for coefficients of an ansatz

$$|\Psi(\theta)\rangle = \sum_{n=0}^{N-1} c_n(\theta) |n\rangle$$

Variational Quantum Eigensolver (VQE)

Hybrid algorithms are most useful on current (noisy & small) devices

Encodings and Circuits

Occupation (one-hot) encoding vs. Gray code encoding

Basis	Encoding	
	Occupation	Gray Code
(N states)	(N qubits)	$(\log_2(N) \text{ qubits})$
$ 0\rangle$	$ 1000\rangle$	$ 00\rangle$
1 angle	0100 angle	$ 10\rangle$
$ 2\rangle$	$ 0010\rangle$	$ 11\rangle$
3 angle	$ 0001\rangle$	01 angle

Results

Occupation (one-hot) encoding vs. Gray code encoding

% TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated

Towards Calorimeter Data Generation with Quantum Variational Autoencoders

Abhishek Abhishek, <u>Eric Drechsler</u>, Wojtek Fedorko *TRIUMF Science Week, 16. August 2021*

HL-LHC Computing Bottleneck: Calorimeter Shower Simulation

Cross-section ATLAS Detector

Representation of single GEANT4 simulated EM shower

HL-LHC Computing Bottleneck: Calorimeter Shower Simulation

Cross-section ATLAS Detector

CPU time for simulating 250 ttbar events

Representation of single GEANT4 simulated EM shower

Generative Models for Synthetic Shower Generation

Generative Models for Synthetic Shower Generation

Discrete Variational Autoencoders

Discrete VAE

Quantum Variational Autoencoders

Prior: Quantum Boltzmann Machine


```
Restricted BMState Probabilityp_{\theta}(v,h) = \frac{1}{Z_{\theta}} \exp[-E_{\theta}(v,h)]State EnergyE_{\theta}(v,h) = -\sum_{i=0}^{D} \sum_{j=0}^{M} W_{ij}v_ih_j - \sum_{j=0}^{D} b_iv_i - \sum_{j=0}^{M} a_jh_j
```

 p_{θ}

 $\mathcal{H}_{\theta} =$

Quantum BM

State Probability

$$(z) = rac{1}{Z_{ heta}} ext{Tr}[\Lambda_z e^{-\mathcal{H}_{ heta}}]$$

State Energy

$$\sum_{l} \sigma_{l}^{x} \Gamma_{l} + \sum_{l} \sigma_{l}^{z} h_{l} + \sum_{l < m} W_{lm} \sigma_{l}^{z} \sigma_{m}^{z}$$

Science, Community, Training, Collaboration

- Undergraduate coop programs
- Master of Data Science (UBC), UBC EngPhys, BCIT Capstone projects
- MITACS GRA, GRI
- Data Science Study Group w/ GAPS
 - Courses/ certificates
 - Paper reading
- Summer Schools, TRIUMF Summer Institute 2020/2021: Cornerstone Models of Quantum Computing

