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Calorimetric Particle Identification at NA62

Kaon decay-in-flight: Main backgrounds 

are the common kaon decay modes 

(K →μν, K →ππ, etc.)

Multiple handles:

• Event kinematics,

• K/π timing O(100 ps),

• Track multiplicity,

• μ/ɣ vetos,

• Particle identification.

Main goal: Study the rare K →πνν decay

Probe for new physics

Particle identification systems:

RICH, MUV3, and calorimeters (LKr, MUV1 and MUV2) 

Overall Muon rejection > 107

B. Velghe, D. Bryman, W. Fedorko, M. Yu



CNN-Based Approach for "CaloPID"

Focus on three calorimeters:

• LKr: Electromagnetic calo.

• MUV1 & MUV2: Hardronic calo

No depth information, the 3D shower is 

projected on a 2D plane by the readout.

Direct correspondence with a 5-channel 

image

Data driven approach, training, validation and testing samples selected directly from the data.

Independent test sample (minimum bias) used for the final evaluation.



Significant Improvement of the μ/π ID

Pion acceptance can be increased from 72 % to 92 % over the 15 to 50 GeV/c (muon mis-id 10-5)

Architecture derived from ResNet
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MACHINE LEARNING FOR PION 
IDENTIFICATION AND ENERGY 
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Overview

Hadronic showers are mostly composed of pions

𝜋0: Captured by the electromagnetic calorimeter 

𝜋±: Require the dense material in the hadronic calorimeter to be stopped 

Hadronic Calibration in ATLAS

Can we use deep learning to improve these techniques?

Neural Networks trained on calorimeter images can 

classify clusters and predict their energies

Studied DNNs, CNNs, and DenseNet

Baseline hadronic reconstruction in ATLAS uses clusters of 

calorimeter cells

Currently, clusters are calibrated in two steps:

1. Classified as electromagnetic or hadronic

calculating the EM probability 𝑃clus
EM

2. Calibration of its energy
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Cluster identification performance
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The ML techniques all do an excellent job of distinguishing 𝜋0 from 𝜋± showers

Dramatic improvements compared to the current classification method using 

~ 8 times

improvement



Pion Energy Calibration

8

After classifying a cluster, need to calibrate its energy

Energy regression goal: Correctly predict the true energy deposited in the cluster.

Quantified by measuring the cluster energy response:  𝑅 =
𝐸reco

𝐸truth
that should be ∼ 1

Before Calibration After calibration

Regression performance for charged pions



Outlook
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Promising results for pion classification and energy calibration with deep-learning!

Looking forward studying more complex scenarios:

First look at the performance with jets

𝜋+, 𝜋− and 𝜋0 mixed in a 1:1:1 ratio

Roughly correspond to the expected 

distribution in jets

Another handy way to represent energy 

deposits is as a point-cloud

Points contains cell info & cluster-level info.

Allows for combining signals from the inner 

detector (tracks) and from calorimeter 

(clusters)



10

D
is

c
o

v
e
ry

,
a
c
c
e
le

ra
te

d
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David Wang, Paul Jung, Olivier Shelbaya, Spencer Kiy, Wojtek 
Fedorko, Rick Baartman, Oliver Kester

Beamline Tuning with 
Reinforcement Learning



11OLIS Beamline

▪ Starting point for AI-tuning 

▪ Low current

▪ Non-radioactive

▪ Manual tuning by operators takes many hours, 
taking away from research beam time

▪ Goal for reinforcement learning agent:

▪ Optimize beam transmission

▪ Offset unknown misalignments 

▪ Improve speed and accuracy of tuning

OLIS Beamline

Source: Beam Physics Note TRI-BN-20-13R, Olivier Shelbaya
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Reinforcement learning

▪ Challenges of beamline environment:

▪ Partially observed (only a few measurable spots)

▪ Continuous and large action spaces

▪ Proposed Algorithm: Recurrent Deep Deterministic 
Policy Gradients (RDPG)

▪ Actor-critic algorithm utilizing actor and critic 
networks to optimize agent learning

▪ Long Short-term Memory (LSTM) networks to 
operate in partially observed environment

𝒐𝑡−𝑙

𝒐𝑡−𝑙+1

.

.

.
𝒐𝑡

LSTM

actor
𝒂𝑡

𝒉, 𝒄 𝒐𝒕 :  observation

for example, current measured at 2 faraday cups

𝒂𝒕 : predicted action

for example, angles to rotate each steerer 

𝒍 :  memory length of LSTM actor

𝒉, 𝒄 : hidden states of LSTM actor

Source: https://towardsdatascience.com/getting-started-with-reinforcement-q-learning-77499b1766b6



13Current Progress and Next Steps

▪ Beamline simulation 

▪ Approximate as a Gaussian particle 
distribution

▪ Analyze in only 1 dimension

▪ Use centroid (solid line) and envelope 
(dotted line) to determine transmission

▪ Current model trains well on simulation 

▪ Using realistic observations but artificial 
reward function

▪ Plans:

▪ More realistic simulations of 
measurement and reward

▪ Develop strategy and tools for real 
beamline tuning

▪ Extend to ISAC and other beamlines
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Quantum Computing 
for Nuclear Physics:

Improving Hamiltonian Encodings 
with the Gray Code

Peter Gysbers

O. Di Matteo, A. McCoy, T. Miyagi,

R. Woloshyn, P. Navrátil

Phys. Rev. A 103, 042405 (2021)

arXiv: 2008.05012

Science Week – Aug 17, 2021



15The Nuclear Many-Body Problem
▪ General goal: solve the Schrodinger equation

▪ This project: the deuteron

▪ Method: solve for coefficients of an ansatz



16Variational Quantum Eigensolver (VQE)

▪ Hybrid algorithms are most useful on current (noisy & small) devices



17Encodings and Circuits

▪ Occupation (one-hot) encoding vs. Gray code encoding



18Results

▪ Occupation (one-hot) encoding vs. Gray code encoding VQE trials: 100
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Follow us @TRIUMFLab

www.triumf.ca

Thank you
Merci



Abhishek Abhishek, Eric Drechsler, Wojtek Fedorko 

Towards Calorimeter Data Generation 
with Quantum Variational Autoencoders

TRIUMF Science Week, 16. August 2021



HL-LHC Computing Bottleneck: Calorimeter 
Shower Simulation

A. Abhishek, Eric Drechsler, Wojtek Fedorko, Calorimeter Shower Generation with QVAE, 16. August 2021

Representation of single 

GEANT4 simulated EM showerCross-section ATLAS Detector



HL-LHC Computing Bottleneck: Calorimeter 
Shower Simulation

A. Abhishek, Eric Drechsler, Wojtek Fedorko, Calorimeter Shower Generation with QVAE, 16. August 2021

Representation of single 

GEANT4 simulated EM shower
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Generative Models for Synthetic Shower Generation

Step 1: Training the Model

Real/Simulated 

Data

Model

Reconstructed/Synthetic

Data

Step 2: Generating Synthetic Data

Random 

Input

Model

Synthetic Data

(independent random samples)

~ hours

A. Abhishek, Eric Drechsler, Wojtek Fedorko, Calorimeter Shower Generation with QVAE, 16. August 2021
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Generative Models for Synthetic Shower Generation

Step 1: Training the Model

Real/Simulated 

Data

Model

Reconstructed/Synthetic

Data

Step 2: Generating Synthetic Data

Random 

Input

Model

Synthetic Data

(independent random samples)

Example: Variational Autoencoder trained with modified loss

~ hours

A
T

L
-S

O
F

T
-P

U
B

-2
0

1
8

-0
0

1

A. Abhishek, Eric Drechsler, Wojtek Fedorko, Calorimeter Shower Generation with QVAE, 16. August 2021
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Discrete Variational Autoencoders

A. Abhishek, Eric Drechsler, Wojtek Fedorko, Calorimeter Shower Generation with QVAE, 16. August 2021

Prior: Restricted Boltzmann Machine

Discrete

Latent Space:

Approximating

Posterior
Prior Decoder

Standard VAE

Flat Approximating Posterior

Hierarchical 

Approximating Posterior

Prior: Restricted Boltzmann Machine

Discrete VAE

arxiv:1609.02200



Quantum Variational Autoencoders

A. Abhishek, Eric Drechsler, Wojtek Fedorko, Calorimeter Shower Generation with QVAE, 16. August 2021

Hierarchical

Approximating

Posterior

Quantum VAE
Prior: Quantum Boltzmann Machine

DecoderQuantum 

Boltzmann 

Machine 

qbits on DWave QPU

Restricted BM

Quantum BM

State Probability

State Energy

State Probability

State Energy

arxiv:1802.05779



27Science, Community, Training, Collaboration

▪Undergraduate coop programs
▪Master of Data Science (UBC), UBC 

EngPhys, BCIT Capstone projects
▪MITACS GRA, GRI

▪Data Science Study Group w/ GAPS
▪Courses/ certificates
▪Paper reading

▪Summer Schools, TRIUMF Summer 
Institute 2020/2021: Cornerstone Models 
of Quantum Computing


