Fermilab Science Office of Science

Nb₃Sn cos-theta IR magnets with stress management

Alexander V. Zlobin TRIUMF 2021 EIC Accelerator Partnership Workshop 26 - 29 October 2021

2nd IR layout and Nb₃Sn IR magnet parameters

		В,	L,	ID,	Beam pipe,	He channel,	Coil ID,
Element	Туре	Т	m	mm	mm	mm	mm
QFFDS01A	Q	-7.83	2.900	164	3	2	174
QFFDS01B	Q	9.10	3.200	256	3	2	266
BXDS01A	D	8.47	3.000	300.0	3	2	310
BXDS01B	D	-5.24	1.000	110.0	3	2	120

Presentation plan:

- Part 1. Magnet feasibility and SM justification for Nb₃Sn D and Q magnets
- <u>Part 2</u>. Status of SMCT technology development by US-MDP at Fermilab

Conclusion

2

Part 1.

Magnet feasibility and Stress Management (SM) justification.

Nb₃Sn wires and cables

- Nb₃Sn composite wire
 - IT (RRP)
 - OD=1.0 mm
 - Cu matrix, D_{eff}~23-85 mcm
- Rutherford cable
 - N<40-42 (max 60)
 - PF~85-87%
 - SS core
 - Cabling I_c degradation <5%
- Properties
 - SC after HT reaction, brittle
 - flux jumps, large M
 - I_c sensitivity to transverse P_{tr}
- Nb₃Sn magnet technology
 - W&R
 - coil stress and strain control during fabrication, assembly and operation

1 mm RRP150/169

28-strand cable with SS core

40-strand cable with SS core

Dipole ionBXDS01A

Quadrupole ionQFFDS01B

6

Quad	Coil ID, mm	270
	Iron yoke ID, mm	180
	Coil current, kA	17.5
	Field gradient G _{max} , T	74.39
	Coil field B _{max} , T	11.98
	11 Cont	

Dipole ionBXDS01A

Pressure in the coil

‡ Fermilab

Quadrupole ionQFFDS01B

Pressure in the coil

7

Fermilab

Part 2.

Status of the SMCT technology development by US-MDP at Fermilab.

9 10/25/2021 A.V. Zlobin | Nb₃Sn cos-theta IR magnets with stress management

US-MDP Nb₃Sn SMCT R&D goals and milestones

- SMCT approach was proposed in 2017. In 2020 it is in US-MDP.
- SMCT R&D goals:
- a) develop and demonstrate a new approach to manage radial and azimuthal stresses in brittle cos-theta coils, through the study and reduction of magnet training;
- b) demonstrate a bore field up to 11 T at 1.9 K with 120-mm aperture in twolayer Nb₃Sn dipole magnets with stress-managed coils;
- c) demonstrate up to 17 T at 1.9 K with a 60-mm aperture in a four-layer Nb₃Sn dipole magnet with stressmanaged outer coils.

Cos-theta dipole coils with stress management (SMCT)

V.V. Kashikhin, I. Novitski, A.V. Zlobin, IPAC-17, Copenhagen, Denmark, May 2017, p. 3597
I. Novitski, J. Carmichael, V.V. Kashikhin, A.V. Zlobin, FERMILAB-CONF-17-340-TD.

The 2020 Lindated Roadmans for the

US Magnet Development Progr

SMCT coil design and practice coil

Practice coil winding/impregnation/ QC

SMCT coil part fabrication by GE Additive

Direct Metal Laser Melting (DMLM) technology

- 316L stainless steel powder
- Technological surface support in blue

SMCT coil parts printed as twolayer cylinders

 surface support inside large blocks removed at GE Additive

Coil structure size control

Control of SMCT coil end parts by micrometer on granite table.

206.06

205.88

Laser Scanning measurements of surface deviation from CAD.

[1] I. Novitski et al., "Using Additive Manufacturing technologies in high-field accelerator magnet coils," CEC-ICMC'21 invited talk and paper

CMM measurements of surface deviation from CAD of SMCT coil straight section .

SMCT coil structure post-processing & winding preparation

Coil part post processing

Winding preparation:

- Cable insulation
- Ultrasonic part cleaning
- Part assembly and surface adjustment
- Adding coil ground insulation

Magnet assembly and test plan

2022

4L mirror

- 1st test of SMCT coil
- 2nd test of both coils

SMCT coil structure optimization

- Short interlayer transition to avoid support elements in transition channels
- More compact LE and RE
- Merge L1 and L2 coil structure

2023

120-mm 2L SMCT dipole with optimized coil structure

Conclusions

- The nominal values of B and G are achievable for the expected apertures in 2nd IR D and Q
- Magnet operation margins look reasonable
- Stress management on the coil level is critical
- SMCT technology development and demonstration is in progress at Fermilab in the framework of US-MDP
- Experimental results are expected within next 2-3 years

