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Nb3Sn CCT Magnet Program at LBNL 

• Nb3Sn CCT work is part of the US MDP Nb3Sn magnets area with a focus on stress 
management approaches for high field magnets

• Early focus in the program consisted of design, fabrication, and testing of 2 layer 
dipole magnet series with ~10 T short sample bore field and 90 mm clear aperture 
(CCT3 / CCT4 / CCT5)

• Currently undertaking subscale CCT program to understand and improve training in 
CCT magnets

• Currently working on design of CCT6 (120 mm bore diameter, 11 T dipole) that can 
serve as an outsert for hybrid configurations

• Advanced modeling effort

o Periodic models

o Full 3D models

o Interface modeling including damage
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Quadrupole Winding Geometry

The CCT Concept Can Offer Several Advantages Over Other 

Magnet Designs

• Canted windings in opposing directions produce dipole field (excellent field quality)

• Windings are placed in a mandrel with grooves - Ribs in mandrel intercept Lorentz force 

leading to substantially reduced azimuthal stress

• Ease of fabrication and minimal tooling 

• Fabrication methods and modularity of approach leads to natural extension for HTS materials
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Transverse current density with cos-theta 
distribution approaches a perfect dipole current 
density distribution

Ribs Intercept Lorentz Force Dipole Winding Geometry

cos~zJ

L. Brouwer, PHD Thesis



All Features Required For The CCT Winding Geometry Are 

Contained In The Machined Mandrels

• Mandrels are machined on 4-Axis CNC mill
o Groove is machined normal to the mandrel surface

o Splice pockets are included for Nb3Sn magnet

o Additional features for instrumentation and alignment

o Gaps for cable expansion are used for Nb3Sn

• Winding performed by placing conductor in the groove 
with minimal tension
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Coil Winding

Machined Mandrel

Alignment Groove

Instrumentation Pocket



Nb3Sn Coil Reaction Requires Minimal Tooling

• Minimal tooling has been used for reaction of Nb3Sn coils

o Clamped perforated stainless steel sheet around coils

o Splice block fillers

• Reaction gaps are critical to avoid conductor damage
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Heat Treatment Tooling

Cable Position Before and After Heat Treatment



Epoxy Impregnation Requires Minimal Tooling

• For early magnets the coil pair was assembled into an Aluminum shell and impregnated

• For later magnets the coils are impregnated individual and then assembled into the magnet
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Full Magnet Impregnation

Individual Coil Impregnation



For Recent Magnets The Layer to Layer Assembly Has 

Been Preformed With The Bend-And-Shim Method

• Contact location between layers is controlled by using shims and Kapton bags that are filled with glass 
and epoxy

o Allows for control of contact location

o Fracture in interface epoxy does not propagate to the coil

o Improved cooling at the pole regions from direct contact with LHe

• Directional preload to reduce energized stress can be applied by bending layers or shell, filling and 
curing epoxy in bent state, releasing bending pressure

layer 1
layer 2

shell

epoxy filled 

Kapton bag

Force Release After Cure

Applied Force

Directional 

Pre-Load on 

Coils
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Modeling Approaches

• 2D models

o Fast Solution

o Good for design & parametric 

studies

o Results deviate near the pole

• 3D periodic models

o Full 3D solution for straight 

section (infinitely long)

o Faster solution than full 3D model

• Full 3D models

o Full solution including end effects

o Reasonable solution times with 

use of cluster
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Full 3D3D Periodic2D



Stress Interception and Interfaces

• CCT approach leads to reduced Azimuthal stress on the dipole midplane

o Lorentz force is intercepted by rib and transferred to spar

o Interface shear stress is created at rib/cable and spar/cable interfaces

• Interface stress between layers is also possible training source
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zz
xz

40 MPa0

Shear Stress at Interface 

Between Layers 1 and 2

Normal and Shear Stress at the Cable/Rib 

Interface



A Number Of Technology Issues Were Addressed With CCT 

2-layer Magnet Series (~9T, 90 Mm Bore) 

• CCT3/4/5 (Nb3Sn) 2-layer CCT dipole magnets have been designed, fabricated, and tested at LBNL

• CCT3 was limited by conductor damage

• CCT4 reached 86% of round wire short sample with significant training

• CCT5 showed some training improvement and reached 88% of round wire short sample

CCT3/4 CCT5

Conductor

Nb3Sn

RRP 54/61

Nb3Sn

RRP 108/127

Cu:non-Cu ratio 0.85 1.2

Inner Bore Diameter [mm] 90 90

Cable Width [mm] 10.1 10.1

Cable Thickness [mm] 1.4 1.5

Number of Strands 23 21

Cable Insulation S-glass Braid S-glass Braid

Iron Yoke Yes Yes

Impregnation Material CTD-101K FSU Mix-61

Short Sample Current [kA] 19.3 17.8

Short Sample Bore Field [T] 10.5 9.7

Magnet Parameters
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Magnet Load Line for CCT4



Design Evolved Through This Series To Address A Number 

Of Issues
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CCT3 CCT4 CCT5

Bore size [mm] 90 90 90

Groove design constant width

1.25 mm gap at 

pole

1.65 mm gap at 

pole

Conductor

RRP 54/61

Ta doped

RRP 54/61

Ta doped

RRP 108/127

Ti doped

HT Temp [C] 650 660 675

Potting 

configuration full magnet full magnet individual layers

Epoxy CTD-101K CTD-101K FSU Mix 61

Layer-to-layer 

interface bonded mold released

bend and shim 

process

• Field quality 

• Conductor 

damage/stability

• Cost and 

scalability

• Training

• Red arrows represent significant changes

• Green arrows represent less significant



CCT5 Shows Initial Improvement in Training Followed by 

Similar Behavior to CCT4 

CCT4

• Coils and shell impregnated together

• CTD101K epoxy

CCT5

• Bend-and-Shim assembly of individually 
impregnated coils

• Mix61 epoxy from FSU

Quench Current Relative to SSL

Initial “fast” training 

eliminated in CCT5

Training rate after 

“fast” segment is 

similar for CCT4/5
Individually Potted Coil Bend and Shim Assembly
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Subscale CCT Magnet Program Was Introduced to Further 

Understand / Improve Training In Stress Managed Magnets 

• 11 strand Nb3Sn cable

o Strand diameters is 0.6 mm

o Cable dimensions (1.1 x 4.0 mm)

o 9100 A short sample current

o Cable length ~ 50m

• Nominal inner bore diameter is 
50 mm (thin spar)

• Bore dipole field is 
approximately 5.2 T as short 
sample current

• Peak conductor field is 
approximately 6.1 T at short 
sample current
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Magnet Load Line*

* Short sample measurements are based on similar wire used for superconducting undulators



Baseline Test Demonstrates That Subscale CCTs Can 

Reproduce Training Behavior Seen In Larger CCT Magnets

• Training slope for subscale (relative to SSL) is 

slightly higher when compared with CCT5 but 

overall training behavior is similar

o Reach 80% of SSL after 14 quenches in subscale

o Reach 80% of SSL after 22 quenches in CCT5

• Baseline subscale CCT has similar normal 

stress to CCT5 but lower shear stress

• Some detraining in the subscale CCT after the 

thermal cycle which was not seen in CCT5 

• Fast training segment is seen for first several 

quenches as was the case for CCT4
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Several Instrumentation Approaches Are Used To Improve 

Understanding Of Training Sources

Subscale tests are used to test novel instrumentation methods and can lead to 

improved interpretation of measurement data

• Voltage taps 

• Strain gages on shell and/or coils

• Acoustic sensors at coil ends and inside of magnet bore

• Quench antennas in bore and between layers
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Interlayer Quench Antennas



Flexible Quench Antenna

Thin spar 

(SUB2)

Virgin 

ramp (Q1)

Later 

ramp 

(Q22)

• Inter-layer antennas producing spatially resolved 
measurements of ramp activity and quench locations

o Quench locations more evenly distributed in thin spar

o Quench locations largely from 45 degrees / pole in thick spar

o Focus has been largely experimental – detailed analysis to 
resume in October

• Moving forward:

o Higher speed acquisition & increased spatial resolution

o Simplified analytic modeling & quench heaters for validation

Thick spar 

(SUB3)

Effort led by R. Teyber, M. Marchevsky



Interface Damage Models Are Being Developed To 

Better Understand CCT Magnet Mechanics
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• Aim: study the differences between the subscale magnets (qualitative). 
Ideally, would like to predict/match the behavior starting from the 
measured interfaces’ properties (quantitative)

• Contact elements (bonded/frictional/CZM) around the cable 
(cable/spar, cable/rib)

o Bonded model, to evaluate tension/shear loads at the interfaces

o Frictional model, to evaluate potential motion with failed interfaces

o Cohesive model, to model progressive failure during training

• Load steps: 0: prestress, 1: cooldown, 2: powering to final current

CZM elements

Effort led by G. Vallone



CCT6 Is Currently In The Design Phase

• CCT6 is a four layer dipole magnet designed 
with bore field of 11 T (at 4.2 K) in a 120 
mm bore

o Next step in CCT development with large bore, 
wide cable, and 4 layers

o Allow for hybrid magnet testing with HTS inserts

o Will use external key and bladder structure

• Currently performing analysis and design 
optimization

o 2D and 3D periodic analysis

o Structure optimization

• Will fabricate test mandrel to test winding 
and reaction with a “wide” cable
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Azimuthal Stress at 12.2 T



Conclusions

• CCT magnets can provide reduced conductor stress by force interception

• CCT magnets use minimal tooling which can greatly reduce the design and fabrication 
complexity

• Winding geometry naturally produces excellent field quality

• Additional interfaces between the cable and mandrel can be possible sources of training

• Less efficient use of conductor when compared with other designs

Focus for next steps for LBNL CCT Program within MDP

• Can training be further improved in CCT magnets?
o Need better understanding of sources of training (e.g. interface stress, motion, stress on conductor)

o Can modeling be used to improve prediction of stresses when failure of surfaces occurs?

o New approaches to reducing training can be tested in subscale setting (e.g. improved impregnation 
materials, engineered interfaces, non-impregnated coils, introduce high heat capacity materials)

• Hybrid magnet design and testing

• Design and Fabrication of CCT6 (11 - 12 T 4 layer dipole with 120 mm bore)
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