Electromagnetic characterization of coatings for accelerators

26/10/2021

University of Naples Federico II -Italy

TRIUMF 2021 EIC Accelerator Partnership Workshop

Coatings and resistive wall impedance

Coatings required (as examples) for reducing surface degassing or for secondary electron yield mitigation...but layers of coating materials significantly increase the **resistive wall impedance**

- Low conductivity, thin layer coatings (NEG, a-C)
- Rough surfaces (LESS)

Surface impedance of the beam pipe depends on electromagnetic properties of *coatings*.

Electromagnetic characterization of "coating materials" is fundamental to evaluate accelerator performance limitations and build up a machine impedance model.

Two different methods

Electromagnetic characterization of Coating materials

Dielectric resonator

high sensitivity

- Sub-THz waveguide
- small skin-depth

- LESS(Laser engineered surface structures)
- conductivity compared with copper
- small samples (10x10mm)

homogeneous coating

NEG(Non-Evaporable Getter)

a-C (Amorphous carbon)coating thickness issues

Sub-THz waveguide attenuation: the proposed method

Evaluation of the **signal attenuation** inside a DUT with coating deposited.

Electromagnetic characterization of coating materials.

Sub-THz transmission methodology

Maria Rosaria Masullo -EIC 2021

4

The DUT

Dimension in mm	
Material	Iron
Waveguide	Circular
Length	42
Radius	0.9
Horns	Pyramidal
Length	39
External side	6
Total Length	120

Methodology advantages: 1)Homogeneous deposition, 2)System reusability, 3)Large area coating

ÍNFŇ

Analytical evaluations

In-house retrieval method

Waveguide of length I_g (TE_{1,1} mode) + pyramidal transitions of length I_t (TE_{1,0} TE_{0,1} modes)

7

Measurement results on NEG

System specifications:

- Spectral Range: > 5 THz
- Dynamic Range > 90 dB
- Scanning Range ~ 850 ps
- Spectral Resolution < 1.5 GHz

NEG thickness 3.96 micron

Accurate guiding system manufacturing

- The methodology allows us to directly evaluate the Re(Z_s) that we can use in beam dynamics calculations
- From surface impedance Z_s to resistive wall impedance Z_{wall}

Sub-THz Waveguide Spectroscopy of Coating Materials for Particle Accelerators

by 👹 Andrea Passarelli ^{1,}2 🖾 💿, 🔃 Can Koral ² 🖾, 🔃 Maria Rosaria Masullo ² 🖾, 🔃 Wilhelmus Vollenberg ³ 🖄,

- ¹ Physics Department, University of Naples "Federico II", 80131 Naples, Italy
- ² INFN Naples Unit, 80131 Naples, Italy
- ³ CERN TE-VSC-SCC, CH-1211 Geneve, Switzerland
- * Author to whom correspondence should be addressed.

Condens. Matter 2020, 5(1), 9; https://doi.org/10.3390/condmat5010009

Received: 20 December 2019 / Revised: 14 January 2020 / Accepted: 15 January 2020 / Published: 20 January 2020

Measurement results on a-C

 $3 \ \mu m$ of Amorphous carbon on copper bulk

Mechanical stress a-C coating on Cu slab

Dielectric resonant cavity

Resonant structure methodology

Dielectric resonator: Resonant structure methodology improves the sensitivity for the electromagnetic characterization of very thin laser surface treated structures and conductivity close to copper one

Resonant structure methodology-simulations

25 Δh 20 sapphire • R=2.6mm Qref-Qcoat/Qref (%) D 51 radius • R=3.5 mm 5 0 0 1 2 3 4 5 $\Delta h (mm)$

Copper vs. molybdenum coated DUT

The maximum Q-factor percentage difference is obtained with a minimum distance between the DUT and the sapphire

Resonant structure methodology- simulations

The sapphire with larger radius (3.5 mm) will be used, because of its higher sensitivity in EM characterization of coating materials (LESS)

Conclusion

Electromagnetic characterization of coating materials

- Sub-THz waveguide attenuation
 - Reliable analytical model for the conductivity retrieval. Good agreement with CST solver.
 - Successful measurement campaign: reliable and handy method to evaluate the electromagnetic properties of samples under test.
 - Published results on NEG and novels on a-C coatings.
- Resonant structure methodology
 - Improves the sensitivity, useful for electromagnetic characterization of very thin laser surface treated structures (i.e. LESS)

