

SEY properties of electron cloud mitigators at cryogenic temperatures

Marco Angelucci

LNF-INFN, Via E. Fermi 54, 00044 Frascati (Rome), Italy

 Table 1.1: Maximum luminosity parameters.

Parameter	hadron	electron
Center-of-mass energy [GeV]	104.9	
Energy [GeV]	275	10
Number of bunches	1160	
Particles per bunch [10 ¹⁰]	6.9	17.2
Beam current [A]	1.0	2.5
Horizontal emittance [nm]	11.3	20.0
Vertical emittance [nm]	1.0	1.3
Horizontal β -function at IP β_x^* [cm]	80	45
Vertical β -function at IP β_y^* [cm]	7.2	5.6
Horizontal/Vertical fractional betatron tunes	0.228/0.210	0.08/0.06
Horizontal divergence at IP $\sigma_{x'}^*$ [mrad]	0.119	0.211
Vertical divergence at IP $\sigma_{\nu'}^*$ [mrad]	0.119	0.152
Horizontal beam-beam parameter ξ_x	0.012	0.072
Vertical beam-beam parameter ξ_y	0.012	0.1
IBS growth time longitudinal/horizontal [hr]	2.9/2.0	-
Synchrotron radiation power [MW]	-	9.0
Bunch length [cm]	6	0.7
Hourglass and crab reduction factor [17]	0.94	
Luminosity $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	1.0	

Introduction

- The highest luminosity of $L = 1 \times 10^{34}$ cm⁻² s⁻¹ is achieved due to the large circulating electron and proton beam currents distributed over as many as 1160 bunches.
- The short spacing between the high-intensity bunches of the EIC favours the electron cloud build up which can lead to:
 - vacuum degradation;
 - beam instabilities;
 - emittance growth;
 - excessive heat load;
 - etc.

Introduction (Mitigation Strategy)

- In the non-cryogenic (warm) sections, the electron cloud can be mitigated by using non-evaporable getter (NEG) coating.
- To avoid high RW heating and electron cloud, a beam screen (BS) will be installed in the beampipe of the RHIC superconducting magnets.

EIC HSR beam screen

<u>must ensure</u>:

• Adequate vacuum level and stability.

• Low impedance to limit dynamic heat load and to avoid impedance-driven instabilities.

• The control of e-cloud build up.

EIC HSR beam screen

will made of:

• Non-magnetic 316LN stainless steel.

• Oxygen-free high-conductivity (OFHC) copper.

TRIUMF EIC2021 Workshop 26-29 Oct.

Heat Load on the BS (SS + OFHC copper)

- The OFHC copper has a conductivity that is several orders of magnitude larger than 316LN stainless steel at 4 K, <u>leading to smaller RW</u> <u>impedance and dynamic heat load expected</u> from beam-induced currents.
- The electron cloud starts for SEY values above 1.1.

Heat load as a function of SEY for the EIC proton beams for initial and maximum luminosity scenarios

EIC HSR beam screen

will made of:

• Non-magnetic 316LN stainless steel.

• Oxygen-free high-conductivity (OFHC) copper.

• Low SEY coating. (a-C)

TRIUMF EIC2021 Workshop 26-29 Oct.

Heat Load on the BS (SS + OFHC Cu + a-C coating)

- a-C film deposited on the copper surface. (SEY < 1.02)
- <u>The thickness of the a-C film can</u> <u>have significant impact on the RW</u> <u>impedance.</u>

Heat load as function of SEY for maximum luminosity scenario including a beam offset of 14 mm.

Studies of SEY of Cu with thin a-C coating

thermal evaporation from graphite rod

Minimum thickness of a-C coating on Cu

XPS estimation of Coverage

M. Angelucci et. al; Phys. Rev. Research Rapid comm. 2, 032030(R) (2020)

Marco Angelucci

Minimum thickness of a-C coating on Cu

M. Angelucci et. al; Phys. Rev. Research Rapid comm. 2, 032030(R) (2020)

Marco Angelucci

SEY variation at Cryogenic Temperature

SEY is an intrinsic material property strongly sensitive to the surface composition and chemical state

SEY of cryogenic surfaces influenced by gas physisorption:

 <u>Coverage (even at sub-</u> <u>monolayer)</u>

L. A. Gonzalez et al., AIP Adv. (2017)

SEY variation at Cryogenic Temperature

SEY is an intrinsic material property strongly sensitive to the surface composition and chemical state

SEY of cryogenic surfaces influenced by gas physisorption:

- Coverage (even at submonolayer)
 - Gas Species

SEY variation at Cryogenic Temperature

SEY is an intrinsic material property strongly sensitive to the surface composition and chemical state

SEY of cryogenic surfaces influenced by gas physisorption:

- Coverage (even at submonolayer)
 - Gas Species

Thank You

Thanks to the low temperature team at LNF: R. Cimino, A. Liedl, R. Larciprete, L. Spallino.

Tanks to the technical support of DAΦNE-L Team: A. Grilli, M. Pietropaoli, A. Raco, V. Tullio, V. Sciarra and G. Viviani

Thanks to ARYA supporting project funded by INFN-SNC5