

Electron and (photo stimulated) desorption at cryogenic temperatures

October 26-29, 2021 **EIC Accelerator Partnership Workshop** 2021

Photodesorption acts only in the electron ring at RT

 Table 1.1: Maximum luminosity parameters.

Parameter	hadron	electron
Center-of-mass energy [GeV]	104.9	
Energy [GeV]	275	10
Number of bunches	1160	
Particles per bunch [10 ¹⁰]	6.9	17.2
Beam current [A]	1.0	2.5
Horizontal emittance [nm]	11.3	20.0
Vertical emittance [nm]	1.0	1.3
Horizontal β -function at IP β_x^* [cm]	80	45
Vertical β -function at IP β_{γ}^{*} [cm]	7.2	5.6
Horizontal/Vertical fractional betatron tunes	0.228/0.210	0.08/0.06
Horizontal divergence at IP $\sigma_{x'}^*$ [mrad]	0.119	0.211
Vertical divergence at IP $\sigma_{y'}^*$ [mrad]	0.119	0.152
Horizontal beam-beam parameter ξ_x	0.012	0.072
Vertical beam-beam parameter ξ_y	0.012	0.1
IBS growth time longitudinal/horizontal [hr]	2.9/2.0	-
Synchrotron radiation power [MW]	-	9.0
Bunch length [cm]	6	0.7
Hourglass and crab reduction factor [17]	0.94	
Luminosity $[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.0	

EIC HSR Beam Screen should grant:

- Low impedance to limit dynamic heat load to the cryogenic system and to avoid impedancedriven instabilities.
- Adequate vacuum level and stability
- Control of e-cloud build-up

Vacuum level and stability in the Hadron Storage Ring

To preserve the beam lifetime and contain emittance growth, a <u>low static and dynamic</u> <u>vacuum level</u> in the EIC hadron beampipe is very important.

10⁻¹¹ Torr (2×10⁷ molecules/cm³) mainly H₂ and He

Beam lifetime ~240 hours

the material characteristics of the

beam screen

BS at cryogenic temperature

Thermal simulation for the beam screen in the Hadron Storage Ring of EIC considering a RW heat load of 0.5 W/m after including magneto-resistance, beam offset, a-C film, and screen geometry effects. (From EIC CDR 2021) 26/10/2021

Residual gas adsorption on the beam screen walls

Saturated vapour pressure curves from R. E. Honig and H. O. Hook, RCA Rev. 21, 360 (1960)

How can Hydrogen be pumped?

CERN (2016) a-C coating at cryogenic temperature

a-C H₂ adsorption isotherms at 6.5 K and 11.1 K vacuum 10-2 performance = 6.5 K (24 hrs) 10-3 = 11.1 K (24 hrs) P_{eq} [mbar, N_2 eq, 293 K] 10-4 The CERN a-C film increases the adsorption capacity by a 10-5 factor 100 (~10¹⁷ H₂/cm²) compared to flat SS and Cu 10-6 10-7 TDS for H₂, N₂ and CO measured for a-C coating as 10-8 function of θ_0 and β Those results 10 1018 1015 1016 10^{17} Σ (CO) = 116.1 K 293 depend on H₂ coverage [molecules/cm²] (H_) = 52.0 K = 6.8.10¹⁴ N./cm Partial pressure [mbar, R. Salemme et al., Proceedings of IPAC2016, Busan, Korea surface (H.) = 59.0 K morphology 10 10-8 CERN a-C film presents The higher desorption 10-11 100 120 20 60 80 140

temperatures for H_2 and CO, respectively, 30 and 60 K.

R. Salemme et al., Proceedings of IPAC2016, Busan, Korea

BS temperature [K]

Improvement of

the cryogenic

Electron-Surface interaction

 $\begin{array}{c} 1160 \text{ bunches} \\ 6 \times 10^{10} \text{ particles/bunch} \end{array}$

on Contraction of the second of the second

Beam ionizes residual gas

Electrons (also coming from e-cloud) impact the beampipe

Electron Stimulated Desorption (ESD)

Is there an influence of the morphology?

ESD from LASE-Cu for electron induced vacuum transient studies

Comparative study of ESD at 500 eV from different Ar doses delivered on flat poly-Cu and LASE-Cu samples

ESD yield (η)

The direct determination of η is a non-trivial task, requiring:

- high sensitivity RGA measurements
- complex calibration procedures

Experimental set-up at LNF

- LNF-cryogenic manipulator
- Sample at **15-300 K**

Secondary Electron Yield (SEY) measurements Equipment : Electron gun, Faraday cup

X-Ray Photoelectric Spectroscopy (XPS)

Equipment : Omicron EAC125 electron analyzer, Mg Kα source (hv = 1253.6eV)

Temperature Programmed Desorption (TPD) and Residual Gas Analysis (RGA) measurements Equipment : QMS (Hiden HAL 101 Pic)

η from Cu is higher than η from LASE-Cu, in agreement with recent literature (A. N. Hannah et al. , Vacuum (2021))

LASE-Cu substrate

Morphological effects of porous surfaces

LASE-Cu samples have much greater physical area than that of untreated surfaces where to host gas

One should expect that porous surface adsorbs (desorbs) more than flat substrate

1.4

1.2

1.0

ESD is a surface process mainly governed by the transport of secondary electrons

Electrons, both primary and secondary, are "trapped" by the highly porous structure thus leading to a very low LASE-Cu SEY

A. N. Hannah et al. , Vacuum (2021)

The difference in η decreases on increasing the electron dose (scrubbing)

LASE-Cu

Summary

- Electron Desorption Yield of Ar condensed on the porous substrate is lower than the one observed from the same quantity of gas condensed on the flat counterpart.
- The Electron Desorption Yield from porous materials depends on the morphological features and on the high specific surface of the material.
- From the vacuum stability point of view, these aspects indicate an advantage for the use of porous materials in cryogenic beam screens where high-intensity bunches of protons favors the generation of a high number of electrons in the tube.

Open questions

- Long time exposure to electrons need to be studied to finally compare η form flat and porous materials.
- The study on Ar has singled out processes not involving gas-substrate chemistry. Further studies are mandatory with gas species (especially H₂) usually composing residual vacuum and with a realistic substrate mimicking a-C as grown for EIC. Dissociation or reaction may occur.
- Given the known reactivity among a-C and atomic H, one should study the atomic H presence and the induced reactivity.

