EIC ESR Vacuum System Overview

Charles Hetzel, EIC Vacuum Group Leader EIC Accelerator Partnership Workshop October 26-29, 2021

Electron-Ion Collider

Outline

- ESR Vacuum System
 - Requirements
 - Overview
 - Layout
 - Component Details
 - Current Status
 - SynRad/MolFlow

• Interaction Region

- Requirements
- Overview
- Synchrotron Radiation Studies
- Heat Loads in Final Focusing Magnets
- Summary

Electron-Ion Collider

Electron Storage Ring

ESR Vacuum Requirements

- Provide a sufficient aperture for the electron beam
 - 5, 10 and 18 GeV operating modes
 - $15\sigma_x/25\sigma_y + 10/5mm$ for orbit distortion
 - Reverse bends required for 5GeV operations
 - Low impendence
- Maintain adequate magnet to chamber clearance
- Protect vacuum components from synchrotron radiation

Electron-Ion Col

- Maximum of 10MW of SR power
- Shielding for non-water cooled components
- Damage to components from high energy x-rays
- Ultrahigh vacuum conditions
 - Average dynamic pressure < 1x10⁻⁸ torr
 - Beam-gas lifetime > 20 hours
- Modular installation to minimize in tunnel work

ESR Overview

• Rin	g is c	livided into	o several	sections
Section	Qty	Length [m]	Total [m]	
Arcs	6	257	1542	Injection from RCS
Straights	12	123	1476	OT W
IRs	6	136	816	
			3834	(Special straight) Arcs (16 cells)
 Multip 80 0 81 ~700 	oole a Omm > FS cop PMs m RF be	and dipole 36mm aper oper nounted on M ellows	chambe ^{ture} 1P chambe	Possible detector (Special straight) Straights
				IRG Electron-Ion Collider ⁵

ESR Vacuum Valves

- 30 vacuum sectors (~128m)
- RF shielded gate valves
- All metal roughing valves

RF shielded GVs								
Location	Valves/sect.	# sect.	Total					
Arcs	3	6	18					
Straights	2	6	12					

Roughing valves							
Location	Valves/sect.	# sect.	Total				
Arcs	3	12	36				
Straights	2	20	40				

ESR Vacuum Pumps, Monitoring and Control

- Ion pumps, TSP, NEG
 - One IP and TSP every half cell in arcs
 - Distributed NEG pumping
- Standard gauging layout
 - Three CCGs/vacuum sectors (90)
 - One TCG/vacuum sector (30)
- 1 wire temperature monitoring
 - ~1200 sensors
- RGAs in special sections
- Support equipment
 - 40 turbo carts
 - 10 leak detectors

Electron-Ion Collider

Arc Vacuum Components

Arc Vacuum Chambers

- OFS copper extrusions
- High heat load components (up to 10MW)
- Low impedance geometry (zero step flanges, etc.)
- Copper to stainless steel welding
- >1000 chambers to fabricate, process and integrate

9

ESR RF Shielded Bellows

- Combination RF-Vacuum seal
- Water cooled flanges
- Compact footprint
- Stroke Req: -25/+10mm
 - Cell length variation: +/-5mm

Electron-Ion Collider

10

- Compression (NEG): -15mm
- Extension: +3mm
- Chamber length: +/-2mm
- Alignment: +/-1mm

ESR Horizonal Collimator

ESR Horizonal Collimator

Chamber removed for clarity

Extrusions on order

Current Status 2X 2.008 [51.00 mm] .157 [4.00 mm] 2X Ø.551 [Ø14.00 mm] -4X R.197 [R5.00 mm] Stainless steel 4X R.354 [R9.00 mm] to copper weld 1.732 [44.00 mm] – .079 [2.00 mm] .709 [18.00 mm] 3.150 [80.00 mm] 4.724 [120.00 mm] Prototype RCS chamber **RF-Vacuum seal** after bakeout Extra flange joint to make dipole chambers straight and length more manageable Extra bellows for variable cell length and in situ bakeout **Electron-Ion Collider**

13

ESR Synchrotron Radiation Studies

ESR Pressure Simulation

- Operating pressure dominated by PSD
- ESR average pressure populates 'tails'
- Need to reduce vacuum conditioning time
- NEG coating option
- Simplifies chamber, commercial options
- Requires more bellows and in situ bakeout

Dose [accumulated photons/m]

Electron-Ion Collider¹

15

Interaction Region Overview

Interaction Region Requirements

- Provide clearance for the particle beams as well as the SR fan
 - Large beam sizes through strong focusing quads near IR
- Detectors must be placed as close as possible to IP
- Minimize wake fields and longitudinal impedances
- Accommodate shallow crossing angle (25mrad)
- Minimize high energy photons hitting the central beryllium pipe
- Reduce residual gas pressure to minimize beam-gas interactions
 - High pressure results in high background
- Minimize interaction between beam pipe and collision products

Electron-Ion Col

- Accommodate various ancillary detectors near the IP
- Average dynamic pressure < 1x10⁻⁹ torr

Interaction Region Main Detector Chamber

Synchrotron Radiation Simulations

Photon Distribution on Detector Chamber

Pressure Profile Inside Forward Cryostat

Heat Loads in Forward Magnets

Summary

- Preliminary layouts for complicated vacuum areas have been completed
- Electron storage rings with similar parameters have been built (B factories)
- Interaction region layout is progressing and looks promising
- Vacuum R&D is underway to retire significant risks prior to baselining
 - RF shielded components (bellows, flange joints, GVs)
 - Chamber prototyping (ESR, central detector)
 - Movable collimators
 - Central detector chamber prototype
- Close collaboration with beam physics, magnets and detector groups
- Eager to open active collaborations with other institutions

Thank you for your attention