Vacuum Experience in High-Intensity
Electron Machines

H.-ULRICH (ULI) WIENANDS
Senior Accelerator Physicist, APS-U Project

Argonne National Laboratory

EIC Accelerator Partnership Workshop, 27-Oct-2021

Argonne &

NATIONAL LABORATORY

Argonne‘/)

NATIONAL LABORATORY

ACKNOWLEDGMENTS:
S. DeBarger, S. Ecklund, A. Kulikovt, N. Kurita, S. Novokhatski, J. Seeman, M.
Sullivan, and the rest of the PEP-II team:;

J. Carter. for the APS-U vacuum team



Machine Parameters

e~ e’
HER LER HER LER
Design Achieved (delivery)
Energies e—/ e+ (GeV) 8.973 3.119 8.973 3.119
Currents e—/ e+ (A) 0.75 2.14 @5 @
Number of bunches 1658 I —
Bunch currents e—/ e+ (mA) 045 1.29 1.24 2.09
Bunch spacing (m) 1.26 1.26
IP spot size G, / Gy* (um) 155 477 147 5
Bunch length (0 current) (mm) 10 QO @
Rf Voltage (MV) 18 3 165 4.5(5.4)
Rf Stations * # cavities 54 272 3*4+8*2 4%2
Luminosity (x10°°/cm?*/sec) 30 12.0
Tune shift horiz. e—/ e+ 0.03 0.03 0.059 0.09
Tune shift vert. e— / e+ 0.03 0.03 0.074 0.055
Beam crossing angle O (head-on) O (head-on)




PEP Tunnel
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PEP-Il Vacuum System

LER, e HER, e
= Al extrusion, TiN coated = Cu extrusion with photon stop along
- with antechamber for synchrotron radiation, outside

discrete photon stops with localized Ti
sublimation pumps

baked & glow-discharge cleaned before
installation

- distributed ion pumps in dipole field (DIPs)

- baked & glow-discharge cleaned before
installation

Dist. lon Pump

The Cu chamber shields the X rays quite effectively.
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Vacuum Scrubbing

- The HER system has scrubbed as
predicted in the CDR

- Photon desorption coefficient n < 2E-6
achieved after 200 Ah exposure

- Despite the discrete photon
stops, the LER has scrubbed
at a similar rate as the HER.
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High Current Issues

transverse =

= Flexible rf seals can burn up & arc causing beam instability mg&%iﬁvo E |

Turmn # 3000

= Dimensions change with temperature
- bellows resonances
- Bellows screens (liners) can transmit rf power

* esp. when beam-related (TM) modes get converted to TE modes
 Collimators can convert modes quite efficiently

= Sparse bunch patterns
have a richer spectrum
- and for wideband impedance
the heating is /.y,
short bunches can be
dangerous.
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Bellows Resonances

= Some rf power penetrates through the shield => heating of convolutions esp. when a
resonant mode is excited

- eventually, fans were installed at most bellows.
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Collimator-Induced HOM Power (PEP-Il LER) s. novoknhatski

= Orbit-dependent heating in bellows was observed and traced back to beam-collimator effects

- HOM power could travel 10s of m. Penetrates rf liners. Not easily seen in CST as it is from
converted beam modes

e X=gollimator PRO4 2041 (20m)

—Y-collimator PR0O4:2092 {65m) — X-collimator PR0O4:2081 (45m)

e Y -gollimator PRO4 2032 (15m)

— HOM power in bellows PRO4.2012
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TSP Connector burn |
S. Novokhatski

= This (& only this!) TSP connector kept burning up at high beam current.

= Upstream collimator converts modes, these get into the TSP & fry the
connector insulation, ywave style!

= small ferrite block near connector used for power measurement
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HOM absorber mitigation

S. Novokhatski

= An HOM absorber installed in the chamber upstream of this TSP reduced the power
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Temperature for similar beam currents for 2 run periods
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BPMs Falling (LER) when Shortening Bunches

BPMs extract power at a 7 GHz resonance
Damage at 5.4 MV rf: buttons fell off feedthrough
Buttons were SS, press-fit to Mo pin.

Fit loosened as buttons got hot
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LER BPM Heating

= Increase Vrf by =25%,
S. Ecklund

power to BPMs doubles(!)

Relative Power vs. bunch current for 1740 bunches

9000

8000

= Fix: replaced all 14-mm LER 1000
BPM buttons with 7 mm ones il
= \Where not possible, pull off the oo e
buttons(!) . +f;i§5

2000

1000
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Absorber Bellows
Novokhatski, Weathersby, Kurita
= Significant heating in the IR caused us to look for ways to absorb the HOM power.

- Using a lossy ceramics allows for efficient cooling

- Rf shield protects absorber from direct (TM) beam modes. e ngers

- New “Q2” bellows showed the effectiveness of the method

Absorbing tiles
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APS-U vacuum system

= The APS-U vacuum system differs significantly form the PEP-Il vacuum system:

- 200 mA vs 2 to 3 A (but bunch charge 15.6 nC (4.1 mA) in 48 bunch mode)

- much smaller apertures (22 mm @ vs = 90 by 50 mm o)

- lower linear power density (0.8 MV/turn vs 3.6 MV/turn energy loss in PEP-Il HER)
- but rf shields much closer to beam, much stronger coupling.

= Technology has progressed significantly in the essentially 30 years

- NEG coatings are now fairly common esp, in light sources, important for small apertures
- more widespread use of advanced materials like CuCrZr
- much stronger modelling tools available nowadays.

« AP tools like elegant allow to model impedance effect to a surprising degree of detail.
 ANSYS in widespread use

« CST routinely used for analysis of vacuum components

« Synrad/MolFlow in common use for pressure analysis

AAAAAAAAAAAAAAAAAA
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J. Carter

APS-U total pressures - MolFlow (3D) vs VACCALC (1D)
42pmVO0 lattice, 1000 A*hrs, 200 mA, Kobari PSD data
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Vacuum System Analysis

* Vacuum Pressure Analysis

Pressure (nTorr)

m
=]

- Multiplet analysis tools evaluate design,
predict performance of conditioning system

''''''

- Process, assumptions, and results

documented in report L-bend w/ NEG P
y P cartridges |5 i L-bend w/
- Distributed pumping by NEG strips or NEG y = NEG strips
coatings where possible
- 1D w/ VacCalc v,;.o

Latest MolFlow model of
— Yacugm §ystem.
NEG coatings (pumping highlighted in red)

*Takes time to account for all inputs in a2
spreadsheet but then easy to modify/compare

*Can’t incorporate photon scattering
- 3D w/ MolFlow
*3D models can be modified on CAD side

*Takes time to build models, account for all
surface facets, run Monte-Carlo results until smooth

Multi plet w/
pump crosses

*No assumptions for conductance
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- b
Vacuum System Analysis A J.Carter
e & C,\O“
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= 3D Ray Tracing \ o
- Ray tracing compared with 3 Rxzr . .
separate tools: | ?i T MatLab ray tracing
«2D layout: takes time to lay out ,~ 1 il /— P .
and break down /1I " 38 b ,,/~ L-BEND -
*SynRad: quickest to modify, t’ Tl 1;’*;(-;;#: — =
compares to 2D { = ’
*3D matlab: explore missteering, S MatLab with
verify 'perfect steering' case to 2D and = beam missteering
SynRad
, —— A-MULTIPLET
- Better understanding of ray |
tracing and missteering helps A T
ensure robust shielding within iy i o
narrow apertures 7Tk —. L-BEND
’,P ) \\
SynRad ray tracing :—%{g; 2
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Highlights of R&D

* NEG coated chamber activation
- Copper chambers activated after 1+ year storage

- Activation within mixed system of coated and non-
coated components demonstrated with careful
temperature cycling

- Propose removing FODO gate valves (2 of 4 total)

for large savings ($2.6M in budget) which some NEG activation test stand
could be put toward additional NEG coatings 2018 03 21-23 24 hour activation of SAES NEG coated chambers
300 — ST COMpPOrent s 1.0E02
—— Chite $21 (NG coated)
No NEG coated chamber NEG coated chamber 250 “__i:::::’lrf:l:’l:l\.":il 1.0E03
T*150-250"C TI80-350°C eee$5Y Pump Crom (Gvae)
G o — — 1.0E04
o 2N -E
= 10£05 2
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- chamber T=120°C T Chamber Taie\. E[ 1.0E-06 g
NEG Chambers g 1 R S sesar "
A Temp - 180°C
o 1.0£-08
Standard NEG Commissioning . R
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SAES Getters proposed NEG activation cycle Time (hours)
_________ NEG activation, temperatures and pressures
| Gate valve |
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Conclusion

= B-Factories posed significant challenges to the vacuum system

- Addressed by a number of mitigations like beam-line HOM absorbers, BPM replacements &
others

= Low-emittance light sources do not reach the same raw beam currents but (in case of
APS-U) they have challenges in comparatively high bunch charges.

= NEG coating development is now comparatively widespread and enables the use of
very small apertures.

= The availability of powerful analysis tools and large amounts of computing cycles do
allow to design to tighter margins than we used 25 years ago.

- While the technology is established, the devil is in the details that require a lot of attention.

AAAAAAAAAAAAAAAAAA

18



References

A. Novokhatski et al., “A NEW Q2-BELLOWS ABSORBER FOR THE PEP-II SLAC B-FACTORY?”, Proc. PACO7,
Albuquerque, NM.

= A. Novokhatski & S. Weathersby, “RF MODES IN THE PEP-Il SHIELDED VERTEX BELLOWS”, Proc. PAC 2003, Portland,
OR.

= A. Novokhatski, “HOM EFFECTS IN VACUUM CHAMBER WITH SHORT BUNCHES", Proc. PAC0S5, Knoxville, TN.

= S. Weathersby et al., “DAMPING HIGHER ORDER MODES IN THE PEP-Il B-FACTORY VERTEX BELLOWS”, Proc.
PACO05, Knoxville, TN.

= S. Weathersby et al., “A PROPOSAL FOR ANEW HOM ABSORBER IN A STRAIGHT SECTION OF THE PEP-II LOW
ENERGY RING", Proc. PACO5, Knoxville, TN.

= U. Wienands et al., “HIGH-CURRENT EFFECTS IN THE PEP-Il STORAGE RINGS”, Proc. EPACO08, Genoa, Italy.

= A. McElderry et al., “FINAL DESIGN OF NEG-COATED ALUMINUM VACUUM CHAMBERS...”, Proc. NAPAC2019,
Lansing, M.

= O. K. Mulvany et al., “"NEG-COATED COPPER VACUUM CHAMBERS FOR THE APS-UPGRADE STORAGE RING
VACUUM SYSTEM”, Proc NAPAC 2019 Lansing, M.

= J. Carter, “3D NUMERICAL RAY TRACING FOR THE APS-UPGRADE STORAGE RING VACUUM SYSTEM DESIGN?,
Proc. MEDSI2018, Paris, France.

= J. Carter, “PROGRESS ON THE FINAL DESIGN OF THE APS-UPGRADE STORAGE RING VACUUM SYSTEM?”, Proc.
MEDSI2018, Paris, France.

AAAAAAAAAAAAAAAAAA 19



