Vacuum Experience in High-Intensity Electron Machines

H.-ULRICH (ULI) WIENANDS

Senior Accelerator Physicist, APS-U Project

Argonne National Laboratory

EIC Accelerator Partnership Workshop, 27-Oct-2021

ACKNOWLEDGMENTS:

S. DeBarger, S. Ecklund, A. Kulikov[†], N. Kurita, S. Novokhatski, J. Seeman, M. Sullivan, and the rest of the PEP-II team;

J. Carter. for the APS-U vacuum team

Machine Parameters

			e⁻	e+
	HER	LER	HER	LER
	Design		Achieved (delivery)	
Energies e- / e+ (GeV)	8.973	3.119	8.973	3.119
Currents e-/ e+ (A)	0.75	2.14	1.95	3.02
Number of bunches	1658		1722	
Bunch currents e-/ e+ (mA)	0.45	1.29	1.24	2.09
Bunch spacing (m)	1.26		1.26	
IP spot size $\sigma_x^* / \sigma_y^* (\mu m)$	155	4.7	147	5
Bunch length (0 current) (mm)	10		11.0	11.5
Rf Voltage (MV)	18	3	16.5	4.5(5.4)
Rf Stations * # cavities	5*4	2*2	3*4+8*2	4*2
Luminosity (×10 ³³ /cm ² /sec)	3.0		12.0	
Tune shift horiz. e— / e+	0.03	0.03	0.059	0.09
Tune shift vert. e– / e+	0.03	0.03	0.074	0.055
Beam crossing angle	0 (head-on)		0 (head-on)	

PEP Tunnel

U. Wienands, EIC Accel. Partnership Ws Oct-2021

PEP-II Vacuum System

LER, e⁺

- Al extrusion, TiN coated
 - with antechamber for synchrotron radiation, discrete photon stops with localized Ti sublimation pumps baked & glow-discharge cleaned before installation

HER, e[−] Cu extrusion with photon stop along

- outside
- installation

- distributed ion pumps in dipole field (DIPs) baked & glow-discharge cleaned before

The Cu chamber shields the X rays quite effectively.

Vacuum Scrubbing

• Despite the discrete photon stops, the LER has scrubbed at a similar rate as the HER.

- predicted in the CDR

The HER system has scrubbed as

- Photon desorption coefficient $\eta \le 2E-6$ achieved after 200 Ah exposure

High Current Issues

- Flexible rf seals can burn up & arc causing beam instability
- Dimensions change with temperature
 - bellows resonances
 - Bellows screens (liners) can transmit rf power
 - esp. when beam-related (TM) modes get converted to TE modes
 - Collimators can convert modes quite efficiently
- Sparse bunch patterns have a richer spectrum
 - and for wideband impedance the heating is Î*I_{av}, short bunches can be dangerous.

p Ws Oct-2021

transverse mode 5–10 instability

Bellows Resonances

PEP-II HER

- Some rf power penetrates through the shield => heating of convolutions esp. when a resonant mode is excited
 - eventually, fans were installed at most bellows.

U. Wienands, EIC Accel. Partnership Ws Oct-2021

Collimator-Induced HOM Power (PEP-II LER)

- Orbit-dependent heating in bellows was observed and traced back to beam-collimator effects
 - HOM power could travel 10s of m. Penetrates rf liners. Not easily seen in CST as it is from converted beam modes

S. Novokhatski

PEP-II style fixed collimator

TSP Connector burn

- This (& only this!) TSP connector kept burning up at high beam current.
- Upstream collimator converts modes, these get into the TSP & fry the connector insulation, µwave style!
- small ferrite block near connector used for power measurement

S. Novokhatski

HOM absorber mitigation

• An HOM absorber installed in the chamber upstream of this TSP reduced the power

Temperature for similar beam currents for 2 run periods (measured on a tile outside of TSP).

S. Novokhatski

BPMs Falling (LER) when Shortening Bunches

BPMs extract power at a 7 GHz resonance

Damage at 5.4 MV rf: buttons fell off feedthrough

Buttons were SS, press-fit to Mo pin.

Fit loosened as buttons got hot

LER BPM Heating

 Increase Vrf by ≈25%, power to BPMs doubles(!)

- Fix: replaced all 14-mm LER
 BPM buttons with 7 mm ones
- Where not possible, pull off the buttons(!)

Absorber Bellows

Significant heating in the IR caused us to look for ways to absorb the HOM power.

- Using a lossy ceramics allows for efficient cooling
- Rf shield protects absorber from direct (TM) beam modes. _
- New "Q2" bellows showed the effectiveness of the method

Novokhatski, Weathersby, Kurita

13

APS-U vacuum system

The APS-U vacuum system differs significantly form the PEP-II vacuum system:

- 200 mA vs 2 to 3 A (but bunch charge 15.6 nC (4.1 mA) in 48 bunch mode)
- much smaller apertures (22 mm ø vs \approx 90 by 50 mm ø) -
- Iower linear power density (0.8 MV/turn vs 3.6 MV/turn energy loss in PEP-II HER)
- but rf shields much closer to beam, much stronger coupling.
- Technology has progressed significantly in the essentially 30 years
 - NEG coatings are now fairly common esp, in light sources, important for small apertures
 - more widespread use of advanced materials like CuCrZr
 - much stronger modelling tools available nowadays.
 - AP tools like elegant allow to model impedance effect to a surprising degree of detail.
 - ANSYS in widespread use
 - CST routinely used for analysis of vacuum components
 - Synrad/MolFlow in common use for pressure analysis

Vacuum System Analysis

- Vacuum Pressure Analysis
 - Multiplet analysis tools evaluate design, predict performance of conditioning system
 - Process, assumptions, and results documented in report
 - Distributed pumping by NEG strips or NEG coatings where possible
 - 1D w/ VacCalc
 - Takes time to account for all inputs in a spreadsheet but then easy to modify/compare
 - Can't incorporate photon scattering
 - 3D w/ MolFlow
 - •3D models can be modified on CAD side
 - Takes time to build models, account for all surface facets, run Monte-Carlo results until smooth
 - •No assumptions for conductance

Latest MolFlow model of vacuum system (pumping highlighted in red)

Vacuum System Analysis

- 3D Ray Tracing
 - Ray tracing compared with 3 separate tools:
 - •2D layout: takes time to lay out and break down
 - SynRad: quickest to modify, compares to 2D
 - 3D matlab: explore missteering, verify 'perfect steering' case to 2D and SynRad
 - Better understanding of ray tracing and missteering helps ensure robust shielding within narrow apertures

<numb 812

Highlights of R&D

- NEG coated chamber activation
 - Copper chambers activated after 1+ year storage
 - Activation within mixed system of coated and noncoated components demonstrated with careful temperature cycling
 - Propose removing FODO gate valves (2 of 4 total) for large savings (\$2.6M in budget) which some could be put toward additional NEG coatings

SAES Getters proposed NEG activation cycle

NEG activation test stand

NEG activation, temperatures and pressures

<numb 812

Conclusion

- B-Factories posed significant challenges to the vacuum system
 - Addressed by a number of mitigations like beam-line HOM absorbers, BPM replacements & others
- Low-emittance light sources do not reach the same raw beam currents but (in case of APS-U) they have challenges in comparatively high bunch charges.
- NEG coating development is now comparatively widespread and enables the use of very small apertures.
- The availability of powerful analysis tools and large amounts of computing cycles do allow to design to tighter margins than we used 25 years ago.
 - While the technology is established, the devil is in the details that require a lot of attention.

m

References

- A. Novokhatski et al., "A NEW Q2-BELLOWS ABSORBER FOR THE PEP-II SLAC B-FACTORY", Proc. PAC07, Albuquerque, NM.
- A. Novokhatski & S. Weathersby, "RF MODES IN THE PEP-II SHIELDED VERTEX BELLOWS", Proc. PAC 2003, Portland, OR.
- A. Novokhatski, "HOM EFFECTS IN VACUUM CHAMBER WITH SHORT BUNCHES", Proc. PAC05, Knoxville, TN.
- S. Weathersby et al., "DAMPING HIGHER ORDER MODES IN THE PEP-II B-FACTORY VERTEX BELLOWS", Proc. PAC05, Knoxville, TN.
- S. Weathersby et al., "A PROPOSAL FOR A NEW HOM ABSORBER IN A STRAIGHT SECTION OF THE PEP-II LOW ENERGY RING", Proc. PAC05, Knoxville, TN.
- U. Wienands et al., "HIGH-CURRENT EFFECTS IN THE PEP-II STORAGE RINGS", Proc. EPAC08, Genoa, Italy.
- A. McElderry et al., "FINAL DESIGN OF NEG-COATED ALUMINUM VACUUM CHAMBERS...", Proc. NAPAC2019, Lansing, MI.
- O. K. Mulvany et al., "NEG-COATED COPPER VACUUM CHAMBERS FOR THE APS-UPGRADE STORAGE RING VACUUM SYSTEM", Proc NAPAC 2019 Lansing, MI.
- J. Carter, "3D NUMERICAL RAY TRACING FOR THE APS-UPGRADE STORAGE RING VACUUM SYSTEM DESIGN", Proc. MEDSI2018, Paris, France.
- J. Carter, "PROGRESS ON THE FINAL DESIGN OF THE APS-UPGRADE STORAGE RING VACUUM SYSTEM", Proc. MEDSI2018, Paris, France.

