An Overview for the Sirius Vacuum System

Thiago Rocha On behalf of the Vacuum Group

27th October 2021

thiago.rocha@cnpem.br

Outline

- Accelerators Layout
- Vacuum system overview
 - Fabrication
 - Installation
 - Vacuum performance
 - Vacuum related problems
 - IDs
- Final Remarks

CNPEM is a private institute, non-profit, supervised by the Brazilian Government

Accelerators layout

Storage Ring: layout for a typical sector

5 of 28

Storage ring: multipole chambers

XXXIX CBRAVIC, Joinville, 2018

AND INNOVATION

PÁTRIA AMADA

Storage ring: dipole chambers

BRASIL

Storage ring: pumping stations

PÁTRIA AMADA

BRASIL

Main chambers and components: Special components

RF shielded bellows

Telescopic

Axial stroke: -9mm/+ 2mm Radial stroke: 0,02mm

Gear

Axial stroke: -5mm/+ 2mm Radial stroke: 0.5mm

12 units

Axial stroke: -9 mm/+ 2mm Radial stroke: 0.5 mm

9

AND INNOVATI

Main chambers and components: Special components

CNPEM

NEG coating facility at CNPEM

License agreement signed with CERN in 2012

- Deposition of up to 3.2 m long chambers
- Magnetic field up to 600 Gauss
- Up to 6 straight chambers simultaneously
- Bake-out system integrated to the solenoids
- Automatic control of the deposition
- Individual control of each chamber

NEG coating production

12

NEG coating production

About **1100 hours** of NEG coating

 Different crosssections, lengths, and materials

St. Steel – CF40 – vac. diagnostic cross

Installation – Storage Ring

Storage ring: Vacuum Performance

BRASIL

Vacuum related problems

SR ion pump: pressure spikes when operated w/ voltage > 3kV

SR ion pump: short-circuit (1 units)

Photon beam exit port: hot spot

Booster inj. septum chamber: high voltage arc – vacuum leak

SR inj. septum chamber: high voltage arc – vacuum leak

Ver Scraper: coil spring popped up

IDs: Comissioning Undulators

Compact Linear Polarizing Undulator (CLPU)

Chambers' fabrication challenges:

- Tight Al extrusion and machining tolerances
- Small wall thickness: 0.5 ±0.1 mm
- Narrow gap = hard to NEG coat

Achieved Static Pressure <= 1.10⁻¹⁰ mbar

40

17 of 28

MINISTRY OF SCIENCE, TECHNOLOGY

IDs: Ongoing Work

• Delta long period (52.5 mm)

- Main challenges:
 - Mechanical tolerances
 - Chamber to magnet clearance = 0.25 mm
 - Assembling and NEG activation

Al extruded profile

- Delta short period (22 mm)
 - Main challenges:
 - Mechanical tolerances
 - NEG coating
 - Chambers' cooling > upstream dipole SR + image curr.
 - Chamber to magnet clearance = 0.025 mm
 - Assembling and NEG activation

Patent pending!

Sussccessfully developed

Final Remarks

- The vacuum system installation of the Sirius accelerators went well and was done in a short time
- The expected static pressures were achieved right after the vacuum installation, and the machine was delivered for starting the commissioning without delays
- Despite the few problems that we have faced until now, the vacuum has been performing well, and pressure has decreased as expect with beam conditioning. The design pressure was already achieved at accumulated beam dose of about 70 A·h
- R&Ds to fabricate the challenging chambers for the Delta undulators is ongoing and we hope to install the first prototypes in 2022

Thank you for your attention!

Aknowledgements:

- OFI Group
- MAT Group
- PRO Group
- LQU Group
- IMA Group
- CON Group
- DIG Group
- Engineering and Technology Division

thiago.rocha@cnpem.br

Backup slides

Special Heaters for Bake-out and NEG activation

Main characteristics of the special heaters:

- Developed along with a Brazilian company
- Thickness < 0.4 mm
- Voltage < 50V
- Max. operating temperature = 230 °C

Aluminum cov

Polyimide bonding film

Pyralux HT 8525R

Total of 1635 heaters are installed in the storate ring

CNPEM

SCIENCE, TECHNOLOGY

AND INNOVATIO

NEG films coated at LNLS

NEG coating R&D – Results

PÁTRIA AMADA BRASIL

NEG coating R&D – Results

PÁTRIA AMADA

Chamber's cleaning procedure

Procedure:

- Tubes and components gross degreasing 1.
- Tubes etching LNLS procedure 2.
- 3. Copper components post-EDM processing???
- Fabrication process: machining, brazing, 4. welding, etc...
- Chambers degreasing 5.
- 6. Light deoxidizing:
 - ➢ 5% ammonium citrate

Developed cleaning procedure:

- 10% ammonium persulfate + 0,1% amonium 1. acetate (etching ~ 15 μ m)
- 5% H₂O₂ (helps to remove silver insoluble residuals) 2.
- 5% ammonium citrate (deoxide + passivation) 3.
 - -- Surface roughness < 0.4 μ m (Ra) --

XPS analysis – LNLS cleaned surface

Cleaning quality criteria (based on CERN):

Other contaminants should be analyzed MINISTRY OF CE, TECHNOLOGY

Silver

Dealing with unused Synchrotron Radiation

PÁTRIA AMADA

BRASIL

Technical challenges

28 of 37

Rafael M. Seraphim

Technical challenges

29 of 37

Rafael M. Seraphim

NEG film

A NEG material is a metallic alloy that can pump most of the gases present in a vacuum system after thermal dissolution of its native oxide layer (activation process).

NEG, when in room temperature, do not pump methane and noble gases.

Adapted from: P. Chiggiato (CERN), ICTF-2005

30 of 28

Rafael M. Seraphim

MINISTRY OF CIENCE, TECHNOLOGY

Storage ring: distinct cross-sections along the sector

PÁTRIA AMADA

Storage Ring: Vacuum Performance

Rafael M. Seraphim

PÁTRIA AMADA BRASIL

CNPEM

MINISTRY OF SCIENCE, TECHNOLOGY

AND INNOVATIO