

Final-Focus Superconducting Magnets for SuperKEKB

N. Ohuchi

- 1. SuperKEKB Interaction region overview
- 2. IR superconducting magnets
 - ✓ Quadrupole magnets
 - ✓ Corrector magnets
 - ✓ QC1P leak field cancel magnets
 - ✓ Compensation solenoids
- 3. Summary

Two cryostats in SuperKEKB IR

Super

KEKB

Configuration of IR magnet system

Super

KEKB

Configuration of IR magnets

QCS-R Cryostat **QCS-L** Cryostat Helium Vessel Helium Vessel Helium Vessel ESR1 Solenoid QC2LP ESL solenoid QC1RE 4 correctors 4 correctors (a1,b1,a2,b4) QC1LP b3 corrector (a1,b1,a2,a3)Leak field 4 correctors cancel coils (a1,b1,a2,b4) (b3,b4,b5,b6) IP (a1,b1,a2,a3) OC2LE **QC1LE** 83 mrad 4 correctors 4 correctors (a1,b1,a2,b4)Leak field (a1,b1,a2,b4)QC1RP cancel coils b3 corrector 5 correctors (b3,b4,b5,b6) (a1,b1,a2,a3,b4) QC2RP HER 4 correctors (a1,b1,a2,a3)

25 SC magnets in QCSL

4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 16 SC correctors: a1, b1, a2, b4

4 SC leak field cancel magnets: b3, b4, b5, b6

Helium Vessel

1 compensation solenoid 2021/10/26

30 SC magnets in QCSR

4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 19 SC correctors: a1, b1, a2, a3, b3, b4 4 SC leak field cancel magnets: b3, b4, b5, b6

ESR2

OC2RE

ESR3

4 correctors

3 compensation solenoid EIC2021 Partnership Workshop

LFR

- Main quadrupoles [QC1, QC2]: 8 magnets
 - Forming final beam focusing system with quadrupole doublets.
- Correctors [*a*₁, *b*₁, *a*₂, *a*₃, *b*₃, *b*₄]: 35 magnets
 - a_1 , b_1 , a_2 : magnetic alignment of the magnetic center and the mid-plane phase angle of main quadruple.
 - Corrections of center shift> 0.5 mm, roll of the mid-plane angle>10 mrad
 - a_3 , b_3 : correction of sextupoles induced by magnet construction errors.
 - b_4 : increasing the dynamic transverse aperture.
- Compensation solenoid[ESR, ESL]: 4 magnets
 - Canceling the integral solenoid field by the particle detector (Belle II).
 - By tuning the B_z profile, the beam vertical emittance is designed to be minimized.
 - The compensation solenoids are designed to be overlaid on the main quadrupoles and correctors.
 - ESR consists of three solenoid magnets of ESR1, ESR2 and ESR3.
 - Leak field cancel coils $[b_3, b_4, b_5, b_6]$: 8 magnets
 - Canceling the leak field on the electron beam line from QC1P (collared magnet).
 - <u>Total number of the SC devices in two cryostats = 55</u>

Configuration of IR magnet systems

QCSL

QCSR

Super

6-

- Main quadrupoles [QC1, QC2]
 - QC1L(R)P, QC2L(R)P for the left (right) cryostat to IP and for the positron beam line.
 - QC1L(R)E, QC2L(R)E for the left (right) cryostat to IP and for the electron beam line.

	Integral field gradient, (T/m)•m	Magnet type	Z pos. from IP, mm	θ, mrad	ΔX, mm	ΔY, mm
QC2RE	13.58 [32.41 T/m × 0.419m]	Iron Yoke	2925	0	-0.7	0
QC2RP	11.56 [26.28 × 0.410]	Permendur Yoke	1925	-2.114	0	-1.0
QC1RE	26.45 [70.89×0.373]	Permendur Yoke	1410	0	-0.7	0
QC1RP	22.98 [68.89×0.334]	No Yoke	935	7.204	0	-1.0
QC1LP	22.97 [68.94×0.334]	No Yoke	-935	-13.65	0	-1.5
QC1LE	26.94 [72.21×0.373]	Permendur Yoke	-1410	0	+0.7	0
QC2LP	11.50 [28.05 × 0.410]	Permendur Yoke	-1925	-3.725	0	-1.5
QC2LE	15.27 [28.44×0.537]	Iron Yoke	-2700	0	+0.7	0

Cross section design of main quadrupoles [QC1, QC2]

The quadrupole magnets are designed with the two layer SC coils (double pane cake design).

QC1LP Magnet, four superconducting coils for QC1RP

QC1P (No iron yoke)

QC1P magnet cross section

QC1P magnet design (QC1RP, QC1LP)

- Design field gradient = 76.37 T/m @ 1800 A
- Effective magnetic length = 0.3336 m
- Magnet length = 0.4093 m
- B_p = 4.56 T (with solenoid field of B_z=2.6 T, B_r=1.1 T)
- Load line ratio at 4.7 K = 72.3 %
- Inductance = 0.88 mH

Coil design

- 2 layer coils (3 coil blocks for each layer)
- Error field in 2 D cross section @ R=10 mm
 - $b_6 = 0.10$ units, $b_{10} = -0.21$ units, $b_{14} = 0.02$ units
- Integral error field in 3D model
 - $b_4 = 0.24$ units, $b_6 = 0.54$ units, $b_8 = 0.01$ units , $b_{10} = -0.21$ units

Superconducting cable

- Cable size : 2.5 mm × 0.93 mm
- Keystone angle = 2.09 degree

QC1E (Permendur yoke)

QC1E magnet cross section

QC1E magnet design (QC1RE, QC1LE)

- Design field gradient = 91.57 T/m @ 2000 A
- Effective magnetic length = 0.3731 m
- Magnet length = 0.4554 m
- $B_p = 3.50 \text{ T}$
- Load line ratio at 4.7 K = 73.4 %
- Inductance = 2.19 mH

Coil design

- 2 layer coils (3 coil blocks for each layer)
- Error field in 2 D cross section
- b₆ = -0.06 units, b₁₀ = -0.34 units,
 b₁₄ = -0.01 units
- Integral error field in 3D model
- $b_4 = -0.02$ units, $b_6 = -0.04$ units, $b_8 = 0.05$ units , $b_{10} = -0.43$ units

Superconducting cable

- Cable size : 2.5 mm × 0.93 mm
- Keystone angle = 1.59 degree

3D magnet design of QC1P/1E

2021/10/26

Super

KEKB

6

SC Corrector Magnets

- The SC correctors were designed and directly wound on the support bobbin (helium inner vessel) by BNL under the US-Japan Science and Technology Cooperation Program in HEP.
 - Multi-layer coil [maximum layer=4 by limiting with the gap distance (5 mm) between the main quadrupole magnet and the helium inner vessel]
 - Some correctors were assembled on the outer surface of QC1LP and QC1RP (no magnetic yoke).

QCSL- Main Quadrupole	Corrector	QCSR-Main Quadrupole	Corrector
QC1LP	a_1, b_1, a_2, b_4	QC1RP	a_1, b_1, a_2, b_4, a_3
QC2LP	a_1, b_1, a_2, b_4	QC2RP	a_1, b_1, a_2, a_3
QC1LE	a_1, b_1, a_2, b_4	QC1RE	a_1, b_1, a_2, a_3
QC2LE	a_1, b_1, a_2, b_4	QC2RE	a_1, b_1, a_2, a_3
		Between OC1RP and OC2RP	b ₂

Direct winding method @BNL

Between QC1RE and QC2RE

021 Partnership Workshop

b₃

SC Corrector Magnets

Corrector magnets

QC2LP correctors : a_1 , b_1 , a_2 , b_4

The NbTi wire was directly attached on the outer surface of the cryostat inner pipe. NbTi wire specification:

- Diameter= ϕ 0.35 mm
- Filament diameter and number= ϕ 5.4 μ m, 2113
- *I_c* @ 4 T, 4.2 K=154 A

SC Corrector Magnets

QC1P leak field cancel magnets

- QC1P for the e+ beam line is non-iron magnet and the e- beam line is very close to QC1P. The leak fields from QC1P go through the e- beam line.
- B₃, B₄, B₅ and B₆ components of the leak fields are designed to be canceled with the SC cancel magnets.
- B_1 and B_2 components are not canceled, and they are included in the optics calculation.

Assembly of the QC1LP, QC2LP, QC1LE, correctors and QC1LP leak field cancel magnets (Front cold mass of QCSL)

EIC2021 Partnership Workshop

Compensation solenoids [ESL, ESR1, ESR2-3] **ESR2-3 compensation solenoid** 110 दददददददद

ESL compensation solenoid

Magnet length= 914 mm Maximum field at 404 A= 3.53 T Stored Energy= 187 kJ

Super

KEKB

ESR1 compensation solenoid

Magnet length= 1575 mm Maximum field at 450 A=3.19 T Stored Energy= 814 kJ Cold diode quench protection system

2021/10/26

EIC2021 Partnership Workshop

• Compensation solenoids [ESR2, ESR3] ESR3 for LER beam line

QCS cryostats into Belle-II

Summary

- The superconducting final focus system for SuperKEKB has been designed and built. The magnet system is made up of 55 superconducting magnets.
 - 8 main quadrupoles (quadrupole doublets per beam)
 - 35 corrector magnets
 - 8 QC1P leak field cancel magnets
 - 4 compensation solenoid
- The system has operated very stably for three years so far.
- I would like to thank the research collaborators in BNL, FNAL and KEK for completing this very complicate system.

Back-up

Magnet design: Permendur yoke

- The final focus system is designed to be operated under the Belle II solenoid field at 1.5 T.
- This field is cancelled with the compensation solenoids along the beam line. This cancellation is not perfect.

At the good cancelling condition, the insides of iron components have magnetic field at 0.5T.

Super

KEKB

Magnet design: Permendur yoke

Super

KEKB

