EIC Spin Rotator Solenoids FY'20 Task Force Results

October 2021 Tim Michalski

Electron-Ion Collider

ENERGY Office of Science

Presentation Overview

- Overview of Requirements
- Coil Electromagnetic Design
- Conductor / Coil Analyses
- Mechanical Design
- Coil Assembly Structural Analysis
- Considerations for the Detailed Design
- Summary

October 2021

Overview of Requirements

Spin Rotator Solenoid Design Overview

October 2021

Overview of Requirements

Description		Requirement				
Parameter	Unit	Short Solenoid	Long Solenoid			
Integrated Field	T-m	18.33	57.6			
Magnet Length	m	2.7	9			
Solenoid Central Field max (B0)	Т	6.79	6.4			
Operating Temperature	К	4.5	4.5			
Good Field Radius	mm	20	20			
Conductor	-	NbTi	NbTi			
Cooling method		Recondensing Cryostat	Recondensing Cryostat	C		
Current operating margin from load line	%	>20	>20			
Required field quality (homogeneity within good field radius)	%	0.1	0.1			
Fringe Field at 0.5m from beam center	mT	50	50	Des requi		
IMPLEMENTATION DETAILS						
Physical Length	m	3.00	9.05			
Magnetic Length (as implemented)	m	2.7	8.1			
Solenoid Central Field	Т	6.79	7.11			

Notes:

1. The pCDR describes a baseline design requirement of using the same, cryostated coil design for both the long and short SRS

2. This drives a single 2.7m coil design (2.7m magnetic length for the short SRS and 8.1m magnetic length for the long SRS) with a mechanical length of ~3m

3. The total number of magnets is 16

October 2021

Comments

See note 2

See note 2

Connected to IR6 cryogenic plant

sign Assumption – rement still pending

See note 1

See note 2

See note 2

LIECTIO

Overview of Requirements

Description		Requirement		
Parameter	Unit	Short Solenoid	Long Solenoid	
Integrated Field	T-m	18.33	57.6	
Magnet Length	m	2.7	9	
Solenoid Central Field may (PO)	т	6.70	6.4	

Operating Tem baseline design requirement – use the same, A Good Field Rad Conductor cryostated coil design for both the long and short SRS Cooling metho This drives a single 2.7m coil design – slight increase in Current operat peak field for the Long Solenoid version (6.4T \rightarrow 7.11T) Required field good field radiu The total number of magnets is 16 – all the same Fringe Field at

IMPLEMENTATION DETAILS			
Physical Length	m	3.00	9.05
Magnetic Length (as implemented)	m	2.7	8.1
Solenoid Central Field	Т	6.79	7.11

Notes:

- 1. The pCDR describes a baseline design requirement of using the same, cryostated coil design for both the long and short SRS
- This drives a single 2.7m coil design (2.7m magnetic length for the short SRS and 8.1m magnetic length for the long SRS) with a mechanical length of ~3m
- 3. The total number of magnets is 16

October 2021

See note 2

See note 2

Spin Rotator Solenoid Synchrotron Radiation Assessment

- Early assessment of the Spin Rotator Solenoids (SRS) within the ESR lattice showed strong dipoles next to the solenoids
- Assessment of the resulting synchrotron radiation dictates using an inserted vacuum beam pipe with adequate cooling and distributed vacuum pumping

Spin Rotator Solenoid Design Overview

Overview of Requirements and Design Decisions

- The result of the synchrotron radiation assessment was a decision to use a warm bore magnet design with an aperture large enough to fit a vacuum flange
- The initial decision was to contain all magnet elements within the cryostat (yoke and shielding)
- LHe cooling will be provided via bayonets, to connect to the IR06 cryogenic distribution system

ber 2021

7

Spin Rotator Solenoid Design Overview

Short and Long Spin Rotator Solenoid Conceptual Design Implementations

- Concept layouts based on April 28, 2020 snapshot of the ESR lattice file.
- Warm magnets are based on magnetic length plus ends.
- Consideration will be required for vacuum chambers.
- Vacuum chambers through SRS magnets will probably require distributed pumping ports and LCW cooling connections outside of the SRS magnets.

Coil Electromagnetic Design

October 2021

Assumptions for the Modular Coil Design

Long solenoid \rightarrow 3 coil modules (*) Middle module 1 eft module 9.05 m

Short solenoid \rightarrow 1 coil module (*)

Longitudinal cross section

- One coil design to suit both short and long spin rotator applications. 1.
- 2. Each coil is individually cryostated.
- 3. The inner radius of the coil = 135 mm (determined by warm bore radius of 68 mm in consideration of the potential synchrotron radiation loads + space allocation for the magnet system components).
- Integrated field is the main requirement, no requirement for field straightness. 4.
- 5. Corrector coils (to tune the solenoid field straightness) are not needed (design decision at the time).
- Magnetic shielding elements can be included to accomplish the fringe field requirements at 0.5 m radially away from the longitudinal axis of the magnet. 6.
 - The parameters under consideration for magnet operational safety are Operating current margin : 20% (requirement), (b) Hot spot temperature : < 150 K (a) October 2021 oin Rotator Solenoid Design Overview 10

EM Performance of the Spin Rotator Short Solenoid (Magnetic Length- 2.7 m)

• The EM design analysis results are compared with the magnetic performance requirements from BNL. -Fulfills the requirements (\mathbf{V}) 14,589,342 Amp-turns

Fringe Field Distribution in the Spin Rotator Long Solenoid (Magnetic Length- 8.1 m)

- Fringe field distribution at 0.5m-2 m away radially (along Y axis) from the longitudinal axis (Z-axis) of the magnet.
 - maximum of 18.1 mT @ y=0.5 m (< 50 mT, Fulfills the requirements \mathbf{M})

Conductor / Coil Analyses

October 2021

pin Rotator Solenoid Design Overview

Conductor and Coil Analyses

Choice of commercial superconductor for the Spi	n Rotator	Solenoid
Parameter	Unit	Value
Conductor material/ shape		Cu stabilized NbTi; Rectangular; multi-filament strand
Bare strand dimensions	mm	1.175 × 2.41
Cu:SC ratio		4.75
I _c (5 T, 4.2 K) / I _c (7 T, 4.2 K)	А	1363 / > 860
RRR		100
Twist pitch length	mm	50
Coil operating current at 4.5 K (I_{op})	А	498.34
Coil operating current density at 4.5 K	A/mm ²	175.82
Operating current margin at 4.5 K, 7.12 T (I $_{\rm op}$ / I $_{\rm SC}$)	%	29.7 (> 20) <
Current sharing temperature (T _{cs})	К	5
Temperature margin	К	0.5
Quench Analysis Results at the Maximum Operating Conditions of the Spin Rotator Long Solenoid		
Parameter	Unit	Value
Inductance of each modular unit	Н	29.8
Longitudinal quench velocity	m/s	24.5
Hot spot temperature	К	82.3
Maximum quench voltage in the coil	V	914
Maximum voltage across the dump resistor	V	500

October 2021

Quump

pin Rotator Solenoid Design Overview

•

Fulfills the requirements (I)

Magnet quench analysis:

 Each coil module contains 12 segments and a quench protection system with 1 ohm, 500 V dump resistor across each segment.

 The magnet can be protected during a quench.

Mechanical Design

October 2021

pin Rotator Solenoid Design Overview

Design Overview – cryostat and interface features

- 136 mm ID warm bore
- Eight tension supports
- Four JLab style 1.5" bayonets
- Central tower
 - -Two commercial vapor cooled leads
 - -Control valve
 - -2" NPS sch10 relief pipe
- Long Spin Rotator Solenoid
 - -Total physical length at 9.05 m
 - -4 cm between magnet solenoids
 - Single beam vacuum chamber through all three magnets

Spin Rotator Solenoid Design Overview

October 2021

Design Overview – cryostat and interface features

- a) Coil Assembly coil, insulation, mandrel
- b) Cold Yoke
- c) Helium Vessel
- d) Thermal shield
- e) Insulating space
- f) 3 mm warm mu-metal
- g) Vacuum Vessel
- h) Cold mass estimated weight ~26,000 bs

b

a2

Preliminary Heat Loads (per magnet)

- Heat load through MLI
 - -0.2 watt/m² for 4 K
 - -4.6 watt/m² for 50 K
 - Includes radiation, conduction, and gas load contributions
 - -Not all geometry modeled yet so includes an extra area added as margin
- Suspension system is an estimate for now
 - -Working on a better number based on the cold mass weight estimate and initial magnetic forces
 - -Current estimate = twice ICH magnet values¹
- Lead flow based on a commercial 1000 amp vapor cooled design and 120% of design current
- Bayonets based on JLab 1.5" design
- Control Valve based on commercial valve
- Relief stack 2" NPS sch10 pipe (length TBD)
- Instrumentation and other sources are estimated

Thermal radiation through MLI, all heatshiel
Suspension system intercepts, all eight
Lead liquifaction load (120% current rating)
4K Bayonets (2)
50K Bayonets (2)
Control Valve
Relief Stack

HEAT SOURCE

Instrumentation(estimated)

All other sources combined (estimated)

1. ICH magnet from M. Anerella et. al., "MPEX **Conceptual Design Report** " Electron-Ion Collider

Spin Rotator Solenoid Design Overview

October 2021

	50 K HEAT LOAD (W)	4K HEAT LOAD (W)	Lead Flow (gr/s)
l surfaces	66	2.6	
	25	2.6	
			1.9
	1.6	0.12	
	0.8		
	0.3	0.1	
	3.9	0.3	
		0.2	
	2.0	0.2	
TOTAL	99.6	6.1	1.9

Coil Assembly Structural Analysis

Spin Rotator Solenoid Design Overview

October 2021

Coil Assembly Structural Analysis

- A preliminary stress analysis has been completed on the coil pack assembly
 - -No thermal effects
 - -Coil properties from;
 - I. Dixon, R. Walsh, W. Markiewicz, and C. Swenson, "Mechanical properties of epoxy impregnated superconducting solenoids"
 - -Highest stresses in the outer magnets of the three magnet string
- Stress in the coil and inner mandrel show no issues

October 2021

Considerations for the Detailed Design

Spin Rotator Solenoid Design Overview

October 2021

Considerations for the Preliminary and Detailed Design

- System optimization with magnet and vacuum chamber goal to reduce the warm bore diameter and coil ID → reduce stored energy and amount of conductor
- Synchrotron radiation is impactful on leading end solenoids evaluate different versions of solenoids for leading and trailing solenoids
- Warm yoke and external shielding elements

October 2021

- -No issue with coil design or field in good field radius
- -Reduces weight of cold mass quicker cool down, reduced load on supports
- -Potential reduction in overall size of solenoid
- Assessed Rutherford cable as an option to eliminate segmenting coil for quench protection – need to assess magnet/power supply as a system
- Preloading coil radially and axially will better control stresses and displacements in the coil structure as it goes through cool down and powering.
- If needed, can put 3 coil assemblies in a single cryostat for 9 m SRS
- Cryogenic interface can be hard piped rather than bayonets

Summary

- The Spin Rotator Solenoid conceptual design meets all current requirements.
- The design is feasible using strand conductor.
- Requirements are being updated as the ESR lattice matures. Tradeoffs of space vs SRS field strength are being evaluated.
- Further optimization will be required on coil and shielding design. • Cost should be taken into account during the detailed design phase.

• JLab Team:

—Bill Crahen, Chase Dubbe, Ruben Fair, Probir Ghoshal, Chuck Hutton, Lakshmi Lalitha, Tim Michalski, Renuka Rajput-Ghoshal, Eric Sun, Mark Wiseman

• BNL Team:

October 2021

-Holger Witte, Vadim Ptitsyn, Steven Tepikian, Mike Anerella, Charles Hetzel, Brett Parker