EIC SRF Systems Overview

Joe Preble EIC RF Systems L2 Manager Kevin S. Smith EIC RF Systems L2 Deputy Manager

TRIUMF 2021 EIC Accelerator Partnership workshop

October 26-29, 2021

Electron-Ion Collider

Jefferson Lab

Outline

- EIC RF Systems Scope Overview
- EIC SRF Cavity Types and Parameters

Electron-Ion Collider

- EIC SRF Design Overview
- Conclusion

EIC RF Scope Overview

Electron-Ion Collider

Scope Overview – EIC RF Systems (Geographical)

IR-10: SRF Systems

Scope Overview – EIC RF Systems (By Type & Number)

RF System	Sub System	Freq [MHz]	Туре	Location	# Cavities
Electron Storage Ring	Fundamental	591	SRF, 1-cell	IR-10	17
Rapid Cycling Synchrotron	Fundamental	591	SRF, 5-cell	IR-10	3
	Bunch Merge 1	295	NCRF, Reentrant	IR-4 or IR-10	2
	Bunch Merge 2	148	NCRF, Reentrant	IR-4 or IR-10	1
Hadron Ring	Capture / Accel	24.6	NCRF, QWR	IR-4	2
	Bunch Split 1	49.2	NCRF, QWR	IR-4	2
	Bunch Split 2	98.5	NCRF, QWR	IR-4	2
	Store 1	197	NCRF, Reentrant	IR-4	6
	Store 2	- 591	SRF, 5-cell	IR-10	1
Strong Hadron Cooling ERL	Inj. Bunch Comp.	- 197	NCRF, Reentrant	IR-2	1
ERL Injector design remains	lnj. Booster	591	SRF, 1-cell (MB)	IR-2	1
under active development.	lnj. Booster	591	SRF, 1-cell (HB)	IR-2	1
Not detailed further today.	Inj. Linearization	1773	SRF, 1-cell (HB)	IR-2	1
	ERL Fundamental	L 591	SRF, 5-cell	IR-2	10
	ERL Third Harmonic	1773	SRF, 5-cell	IR-2	3
Crab Cavity	Hadron	197	SRF, RFD	IR-6	8 (4 CM)
	Hadron/Electron	394	SRF, RFD	IR-6	6

Scope Overview – EIC ESR and HSR Store Beam Parameters

• Example: CDR Table 3.3 - Highest luminosity operation

Table 3.3: EIC beam parameters for different center-of-mass energies \sqrt{s} , with strong hadron cooling. High divergence configuration.

• 2.8E11 per	bunch	ron	proton	electron	pro •	17.2E10 pe	er bunch ii	njected		on	electron
Energy [GeV] • 1:2:4 bunch	290 bunches. I solit at store		275		1(•	28 nC ner	ches at In hunch	iz rep rate			5
CM energy [GeV] energy			10	4.9	•	From RCS I	RF			28.	6
Bunch intensity [10 ¹⁰]	19.1	6.2	6.9	17.2	6.9	4200		4 🗖 🌣			10-3
No. of bunches	290		_ 11	60		 1260 DU 105 beau 	CKETS	an (a- and	hadro	n rin	ac)
Beam current [A]	0.69 ().227	1	2.5	1	2.J		2.9		o	1.93
RI • 290 bunches injected		71	3.3/0.3	391/26	3.2/0.2	9 391/26	2.7/0.25	196/18	1.9/0	.45	196/34
RI • Store pattern formation: 1 -	> 2 -> 4 split	2.0	11.3/1.0	20/1.3	30/ °	9.125 MW	@ 3.65 N	leV per tu	rn	10	20/3.5
β^* , h/v [cm]] • 3x typical R	HIC P current	5.7	80/7.2	45/5.6	63/ °	Note: 18 G	eV radiate	es 38 MeV	per	7.1	196/21.0
IP RMS beam size, h/v [µm]	119/1	L	95/	/8.5		turn. Thus,	, only 0.23	A		198/	27
• 0.7 eV*s (95%)			11	.1		11.1	11	.1		7.3	3
RMS $\Delta \theta$, h/ • Requires high volt	age for short	187	119/119	211/152	220/22	0 145/105	206/206	160/160	220/3	380	101/129
BB paramet bunch length	1	.00	12/12	72/100	12.	0.7cm – 0.	9cm equil	ibrium			3/42
RMS long. emittance $[10^{-3}, eV \cdot s]$	36		36		21		21		11		
RMS bunch length [cm]	6	0.9	6	0.7	7	0.7	7	0.7	7.5	;	0.7
RMS $\Delta p / p [10^{-4}]$	6.8	10.9	6.8	5.8	9.7	5.8	9.7	6.8	10.3	3	6.8
Max. space charge • 30cm rms t	ypical at RHIC	ig.	0.004	neglig.	0.026	poglig	0.021	poglig		5	neglig.
Piwinski angle [rad]	6.3	2.1	7.9	2.4	6	Equilibriun	n dE/E lea	ds to shor	t bunc	hes	1.1
Long. IBS time [h]	2.0		2.9		2.5		3.1		3.8	;	
Transv. IBS time [h]	2.0		2		2.0/4.0)	2.0/4.0		3.4/2	2.1	-
Hourglass facto • Hadron Crab I	RF, SHC ERL R	F	0.	94	•	Electron Cr	rab RF				;
Luminosity $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1.54		10	.00		4.48	3.0	68		0.4	4

6

ANNE

EIC SRF Cavity Types and Parameters

Électron-Ion Collider

Scope Overview – SRF Cavity Design Parameters

Parameter	591 MHz 1-Cell	591 MHz 5-Cell	1773 MHz 5-Cell	197 MHz Crab RFD	394 MHz Crab RFD
Application	ESR	ERL, RCS, HSR	ERL	HSR	HSR, ESR
Frequency [MHz]	591	591	1773	197	394
Number of Cavities	17	10, 3, 1	3	8	6
Number of Cavities per CM	1	1	1	2	1
Number of CMs	17	14	3	4	6
Operating Temperature [K]	2	2	2	2	2
FPCs per Cavity	2	2, 1, 1	2	1	1
Power per Coupler [kW]	400	50, 75, 75	20	70	70
RF Source Type	SSA	SSA	SSA	SSA	SSA
Beam Current [A]	2.5	0.1, 0.005, 1.0	0.1	1.0	1.0, 2.5
HOM Power per Cavity [kW]	40	0.3, 0, 3	TBD	4-6	TBD (> HSR)
V _{cav} [MV]	4.0	22.0	7.3	11.5 (V _T)	3.5 (V _T)
E _{acc} [MV/m]	15.8	17.4	17.4		
E _{pk} [MV/m]	33.6	39.4	39.4	43.4	35.6
B _{pk} [mT]	76.8	76.7	76.7	78.4	74.3
Operating Temperature [K]	2	2	2	2	2

Current EIC SRF Design Overview

Electron-Ion Collider

EIC Crab Cavity Systems – HSR & ESR

	<i>V_t</i> [N	⁄IV]	No. of cavities (per IP, per side)		
System	HSR	ESR	HSR	ESR	
197 MHz	33.83	_	4	_	
394 MHz	4.75	2.90	2	1	

- HSR will have two 197 MHz Crab cryomodules and one 394 MHz Crab cryomodule on each side of the IP.
- ESR requires only one 394 MHz cavity on each side of the IP.
- Refer to extensive information in Crab Cavity workshop presentations by J. Preble, B. Xiao, S. DeSilva and W. Xu.

ESR 591 MHz Single Cell Cavity

- 591 MHz Single Cell Cavity for ESR (J.Guo)
 - 68MV, 17 Cav, 2.5A Beam, 10 MW SyncRad
 - Baseline symmetric cavity
 - Low R/Q, high gradient
 - 500 kW CW dual couplers
 - External SiC HOM absorbers (very large beampipe)
 - Alternative asymmetric design under optimization
 - Space saving, possible lower impedance

11

Electron-Ion Collider

ESR 591 MHz Single Cell Cavity

- 500 kW FPC and 20 kW HOM Absorber
- Refer to workshop presentation by W. Xu.

Two 500 kW CW Fundamental Power Couplers

Two 20 kW SiC warm beamline HOM absorbers.

Electron-Ion Collider

ESR 591 MHz RF System – High Power Amplifiers

- 34 High Power RF Amplifiers
 - 13 MW total installed power for ~9 MW sync rad power, HOM power, other parasitic ring losses. Systems designed for 10 MW sync rad.
 - 350kW 400kW solid state amplifiers (4x cabinets of 90kW 100kW ea. + DC power + controls)
 - Solid state has become competitive on cost, power density, space.
 - Additional advantages w.r.t. safety (low voltage), modularity, commonality, future proofing.

591 MHz 5-cell Cavity, Single Cavity Cryomodule

- A common 591 MHz 5-Cell single cavity cryomodule is the CD-1 concept for RCS, HSR and the SHC ERL.
- High Voltage & Strong HOM damping
- ERL: 180 MV 591 MHz Fundamental RF
 - 100 mA beam, 98.5 MHz bunch frequency, short bunches
 - Requires strong HOM damping with modest HOM power
- HSR: 20 MV 591 MHz Storage System
 - Up to 1A beam, up to 1160 bunches
 - Requires strong HOM damping with up to 3 kW HOM power
- RCS: 60 MV 591 MHz Acceleration System
 - Up to two 28nC bunches accelerated
 - Requires strong HOM damping but very low HOM power

ERL 591 MHz Cryomodule (Qty: 10)

- RCS 591 MHz Cryomodule (Qty: 3)
- HSR 591 MHz Cryomodule (Qty: 1)

ERL has the most cavities:

- Strong HOM damping, but modest HOM power
- Tight space constraints
- Evaluating other options (see alternatives slide 17)

Strong Hadron Cooling (SHC) ERL RF Systems

Conclusion

Conclusions

- EIC requires multiple new SRF systems (cavity, power, and control). Many opportunities for new and exciting work.
- Focused effort to retire risk determines current work. Early work based at BNL and JLab is the basis for developing the appropriate understanding and reducing risk.
- Requirements and designs are mature but not final. The beam and machine physics are still being finalized. Some requirements remain to be understood and finalized. SRF systems may need to be updated as the design is finalized.
- Need to leverage common designs where possible. The schedule and the cost of developing these systems needs to be minimized where possible.

Thank You

Electron-Ion Collider²⁰