

First IR Design

J. Scott Berg Brookhaven National Laboratory EIC Partnership Workshop October 27, 2021

- Flat beams for maximizing luminosity
- *p/e* energies ranging from 41/5 to 275/18 GeV
- Crossing angle, rf cavities create "crab crossing"
 - Electron and hadron magnets share yoke
 - Avoid crosstalk
- Require -4.5/+5.0 m free region for detector

Colliding IR Overview

October 27, 2021

J. S. Berg — First IR Design — EIC Partnership Workshop

- Far-forward detectors require collision products to pass through hadron magnet apertures
- Neutral particles
 ≤ 4 mrad
- 275 GeV protons, $p_T \leq 1.3 \text{ GeV}/c$
- First hadron magnet: spectrometer dipole, embedded detector
- Don't bend electrons

- Dipole for downstream electrons
 - Separate beam for luminosity monitor
 - Electron spectrometer
- Electron magnet apertures determined by synchrotron radiation

Lattices

• Near IR focusing

- Doublet, vertical focus first (small vertical beta)
- Require large beta functions at crab cavities, so horizontal beta stays high
- 30-40 m reserved on each side for detector hardware
- Dipoles near detector for detector hardware create significant dispersion amplitude
 - Hadron forward dipoles separate beam from neutrals
 - Electron rear dipole separate electrons from photons for luminosity monitoring

- IP is 81 cm inside of RHIC IP
- Beamlines tilted with respect to RHIC axis for crossing angle
- Need to get back to arcs
- Dipoles sign chosen so lines diverge
 - 25 mrad crossing
 - Crab cavity sizes
- HSR matching is very space constrained
 - Need spin rotators (both sides), snake (one side)
 - Snake must be at a specific angle
 - Use RHIC magnets almost exclusively
 - RHIC cryostats are long

Magnet Considerations

- First hadron dipole
 - Contains detector
 - Surrounds electron quadrupole
 - Quadrupole component to zero field at electron line. Maybe dipole winding on electron quadrupole.
 - Field independent of energy
 - Other dipoles correct orbit
- Electron and hadron magnets placed to share yokes
- Magnet field/aperture/ crosstalk considerations limit what we can do; everything near its limit

October 27, 2021

J. S. Berg — First IR Design — EIC Partnership Workshop

- Align hadron magnets
 - Pass neutrals and $p_T = 1.3 \text{ GeV}/c$
 - Maximize distance to electron line
- Taper quadrupole to optimize gradient/aperture

- Multiple of π horiontal phase advance between crab cavities to keep crabbing in the IP region
 Ideally odd multiple of π/2 from crab to IP
- Hadron crabs, $\beta_x = 1300$ m
- Electron crabs, $\beta_x 100-150$ m
- Hadrons fall 5° short of this: large beta functions
 Not fixable without much stronger IR magnets
- Electrons, phase advance is too high for a crab near the IP
 - Place cavity further away on rear side, $\approx 3\pi/2$ phase advance
 - Phase advance perfectly 2π between crabs

- Add skew quadrupoles to compensate solenoid
- Between crab cavities, close the crab bump
 - Need skew windings for near-IR magnets
 - A feasibility study showed these could be incorporated
- Outside crab cavities, finish removing coupling with skew quadrupoles

Status

- Lattice is stable, but could use improvements
 - Put in better/updated models of IR magnets
 - Rotators should be more parallel (polarization), but geometry prevents doing much
 - Look at configurations other than high-divergence *p* (high-acceptance, ions, ramping...)
- Look into tapering other forward magnets (see H. Witte's earlier talk)
- Look at improving x_L coverage (stronger/longer IR quads, added and stronger quads near crab)

- Basic near-IR design was the work of Holger Witte and Bob Palmer
- Solenoid compensation: Vasiliy Morosov, Derong Xu, others
- Magnets: Holger Witte, Brett Parker, others in BNL Superconducting Magnet Divsion)
- Others I'm not listing...