Interaction Region Synchrotron Radiation and Vacuum

Marcy Stutzman, JLab Staff Scientist Charles Hetzel, BNL Vacuum Group Leader TRIUMF 2021

EIC Accelerator Partnership Workshop

October 27, 2021

Electron-Ion Collider

Electron Storage Ring

Interaction Region

Interaction Region Requirements Accelerator Detector

- Clearance for beam and tails
- Minimize wake fields and longitudinal impedance
- Thermal management
- Magnets & Cryostats
- Good vacuum to minimize beam broadening

Goal: Average dynamic pressure < 1x10⁻⁹ mbar

- Low z materials (Be, AI)
- Detectors close to IP
- Detector temperature limits
- Low energetic photon flux
- Accommodate ancillary detectors
- Mobile for maintenance
- Synchrotron radiation management
- Good vacuum to minimize detector background

Two Detector Background Sources from Synchrotron Radiation

- Synchrotron Radiation -> detector hits
 - Low energy (keV) photons
 - Photon or secondary particles detected
 - ~2-5 µm Gold coating mitigates
- Synchrotron Radiation induces gas desorption -> beam/gas interaction background
 - Hadron beam on residual gas "target"
 - High energy particles from nuclear scattering
 - Hard to shield, must reduce

Electron-Ion Collider

Marcy Stutzman

SynRad+ modeling software

6

Input

- 3D model of beampipe
- Beam emittance, current
- Magnet locations and fields

Output

- Synchrotron Radiation
 - Position
 - Flux
 - Energy
 - Direction
- Input for Molflow+ dynamic vacuum modeling

Marcy Stutzman Electron-Ion Collider

Synchrotron Radiation Mitigation

- Final photon absorber configuration
 - Horizontal plane only
 - Annular configuration
 - Length, diameter, position
- Beamline dimensions
 - Wider beam pipe for
 - 13.5 σ clearance in x
 - 23 σ clearance in y
- Beamline profile
 - Sawtooth/ridge texture for photon absorption

Interface between Synrad and Geant4

- SynRad+ simulations can give photon
 - Energy
 - Position & direction
 - Flux related current
- Iterate with design mods
 - In process: 0.5 m detector shift results
- Provide SynRad+ photon distributions to collaborations
 - Input for GEANT4 and Fun4All simulations of detector hits

Photon flux incident on vacuum chamber 10 GeV, photons > **10 eV**

Marcy Stutzman Electron-Ion Collider

Interface between Synrad and Geant4

9

- SynRad+ simulations can give photon
 - Energy
 - Position & direction
 - Flux related current
- Iterate with design mods
 - In process: 0.5 m detector shift results
- Provide SynRad+ photon distributions to collaborations
 - Input for GEANT4 and Fun4All simulations of detector

Photon flux incident on vacuum chamber 10 GeV, Photons > 5 keV which can penetrate gold Flux drops by ~1000x

Marcy Stutzman Electron-Ion Collider

Benchmarking SynRad+ code

10

- SynRad+ widely used
 - CERN: LEP & LHC
 - Argonne APS Upgrade
 - SuperKEKB positron
 - ESRF
 - PETRA-III
 - ELETTRA
 - CESR
 - NSLS-II
 - SESAME
 - ALBA

Ref: Kersevan IUVSTA 51st workshop, 2007

Collaboration with M. Sullivan, SLAC

- 2D synchrotron radiation simulation
 - Developed for SLAC B Factory
 - Used for BELLE and SuperKEKB IR
 - Beam Tail profile critical for EIC: Optimizing tail models using SuperKEKB commissioning data
 - Comparison with HERA

Marcy Stutzman

- HERA model in SynRad+ complete
- Future project to compare vacuum predictions

Electron-Ion Collider

Tail simulation details

2D SYNC-BKG (M.Sullivan)

Tails optimized with SuperKEKB data

3D SynRad+ uses Gaussian tails

To approximate EIC tails in SynRad+, add two Gaussian distributions

Tail calculations by C. Montag (July 2021) lower than either profile in simulations

Ongoing studies of the tail profile effect for detector backgrounds and vacuum levels

Marcy Stutzman Electron-Ion Collider

IR Beamline Vacuum Challenges

9 m section with no pump ports Synchrotron radiation liberates gas Close interface with detectors

- Bakeouts limited due to detectors sensitivity
- Isolation valves for beamline during detector movement interfere with detectors

Pumping ports

9m

Marcy Stutzman

Central beryllium section: 6 cm diameter

Electron-Ion Collider

Pumping ports

Hadro

Vacuum System

Electron Beam

SynRad+ & Molflow+ for Dynamic Vacuum

Input

- 3D model of beampipe
- Pump locations
- Materials & Outgassing Rates
- SynRad+ flux per facet
 - Photon Stimulated Desorption Rate -
 - Depends on material and gas species

Output

- Base Pressure distribution
- Outgassing rate of each facet with synchrotron radiation
 - Pressure vs. Amp-hours during commissioning

Dynamic Vacuum

15

Marcy Stutzman

Electron-Ion Collider

All discrete pumps, No NEG coating, no bakeout

• Activation or bake temperature would harm Si detectors Cryogenic beamline pumping not taken into account thus far

IP-6: Detector Removal for Maintenance

Marcy Stutzman Électron-Ion Collider

IP-6: Detector Removal for Maintenance

IR Vacuum Reovery after maintenance

- Detector package removal from beamline for maintenance
- Vacuum Concerns
 - 1. Yearly IR beamline vent
 - 2. Gate valves difficult/impossible
 - 1.Detectors blocked and additional background
 - 2.Calorimeter must slide off beamline
- Need to develop

Venting, pumpdown, conditioning

Ongoing studies

- Recovery after maintenance
- Additional Pump Locations

Marcy Stutzman

- Materials Selection, Preparation
- Synchrotron Radiation Mitigation?

Electron-Ion Collider

Conclusions

- Complex interface between beamline, detectors and magnets
- Synchrotron radiation: SynRad+
 - Benchmarking against 2D codes and operational experience
 - Good integration with detector background modeling
 - Tail distribution still under study
- Dynamic vacuum studies: SynRad+ and Molflow+
 - Dynamic vacuum calculations vs. conditioning time
 - Materials selection and processing for improved conditioning time
 - Downstream effects and cryogenic adsorption still to be considered
- IR Synchrotron Radiation Background working group: bi-weekly
 - Proto-Collaboration detector working groups
 - Accelerator collaborators welcomed

Thanks for your attention. Questions? marcy@jlab.org

Marcy Stutzman

Electron-Ion Collider