Contribution ID: 23 Type: not specified

Estimation of internal dosimetry of 64Cu and 225Ac labeled PSMA-617

Purpose:

Evaluation of internal dosimetry should have performed before injection of theranostic radiopharmaceuticals. The aim of this study was to estimate the 64Cu-PSMA-617 biodistribution in mice and human absorbed dose of 64Cu and 225Ac-PSMA-617.

Materials and Methods:

The radiolabeling efficiency of 64Cu-PSMA-617 was showed over 95%, and stabilities of 64Cu-PSMA-617 has remained over 98% in both human and mouse serum for 48 h. 64Cu labeled PSMA-617 were used to calculate the biodistribution in mice (n = 4). Time-dependent biodistribution of 64Cu-PSMA-617 was measured at 2, 4, 6, 24, and 48 hours after injection. Biodistribution data from 64Cu-PSMA-617 in mice were used to calculate residence time and effective dose in human. Human absorbed dose of 64Cu and 225Ac-PSMA-617 was approximated by extrapolation data of 64Cu-PSMA-617 mice biodistribution. Absorbed dose and the effective dose were estimated by the OLINDA/EXM (Vanderbilt University, Nashville, TN) adult male model. Region residence time and absorbed dose have calculated the average with standard deviation (SD).

Results

The highest uptake ratio was observed in the liver and kidney at 2 h. Rapid blood clearance was observed for 64Cu-PSMA-617. 64Cu-PSMA-617 residence time in liver and kidney were 3.23E+00 \pm 3.69E-01 and 3.67E-01 \pm 2.67E-02 MBq-h/MBq, respectively. Liver absorbed dose of 64Cu and 225Ac-PSMA-617 were 7.64E-03 \pm 8.68E-04 and 2.82E+01 \pm 3.24E+00 mGy/MBq, respectively. Kidney absorbed dose of 64Cu and 225Ac-PSMA-617 were 4.61E-04 \pm 1.50E-04 and 2.04E+01 \pm 1.50E+00 mGy/MBq, respectively. The effective dose of 64Cu and 225Ac-PSMA-617 were 1.77E-02 \pm 5.07E-04 and 1.82E+00 \pm 1.69E-01 mSv/MBq, respectively.

Conclusion.

We evaluated the human absorbed dose of 64Cu-PSMA-617 and 225Ac-PSMA-617. The 225Ac-PSMA-617 effective dose was 103 fold higher than 64Cu-PSMA-617. These result may help to a strategy of targeted alpha therapy calculate effective dose for metastatic castration-resistant prostate cancer (mCRPC) patients.

Email Address

skwoo@kirams.re.kr

Presentation Type

Poster

Primary author: Dr WOO, Sang-Keun (Korea Institute of Radiological and Medical Sciences)

Co-authors: Ms HEESU, Ahn (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr PARK, Hyeon (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr LIM, Ilhan (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr KIM, Jung Young (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr JUNG, Ki-Hye (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr LEE, Kyo Chul (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr LIM, Sang Moo (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Mr KIM, Wook (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr LEE, Yong Jin (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr LEE, Yong Jin (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea); Dr LEE, Yong Jin (Division of applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea)

Presenter: Dr WOO, Sang-Keun (Korea Institute of Radiological and Medical Sciences)

Track Classification: Preclinical