Contribution ID: 9 Type: not specified

A dual generator concept to yield 226Th: an isotope of interest for targeted alpha therapy

Introduction-Thorium-226 (t1/2=30.6m) is an isotope of interest for targeted alpha therapy (TAT). It decays via a four alpha decay chain to long-lived (t1/2=22.3 y) Pb-210 with a 111 keV gamma-line (3.29%) that can be used for SPECT imaging; thus providing theranostic capabilities. A generator concept is necessary to provide a consistent supply of Th-226 from its parent U-230 (20.23 d) [1]. Furthermore, Th-226 needs to be supplied in a form that is amenable to direct labeling with the chelate; minimizing the amount of time required for its preparation for use. Uranium-230 is best obtained by the proton irradiation of thorium targets via formation of Pa-230 (17.4 d), which partially decays to U-230. To yield a consistent supply of Th-226, a dual generator concept was developed: first to yield U-230 from the decay of Pa-230, and second, to separate Th-226 from the parent U-230.

Methods-Protactinium-230 used in this work was obtained from Oak Ridge National Laboratory as a side product from the production of Ac-225 [2]. An extraction chromatography resin approach was used for both the design of a Pa-230/U-230 generator, and a U-230/Th-226 generator. Uranium-230 and its decay product Th-226 were first sorbed on a solid phase in acid media. Uranium-230 was then eluted in acid as Th-226 remained on the stationary phase. In a third step, Th-226 was eluted from the resin in acidic media.

Results-The Pa-230/U-230 generator provided U-230 in high radiochemical yield and purity (>99.9%). The U-230/Th-226 generator yielded approximately 90% of the Th-226 with a >99.5% recovery of parent U-230 for each elution cycle. Thorium-226 was obtained with high radiochemical purity (>99.9%). Multiple elutions have been performed successfully with consistent radiochemical yields and purities.

Conclusions-A dual generator system was successfully designed and tested to provide a relibale supply of Th-226. Uranium-230 can be conveniently supplied from a Pa-230/U-230 generator. The U-230/Th-226 generator, in turn, provides Th-226 in high radiochemical yield and purity and in a form that is amenable to direct labeling with chelates for use in targeted alpha therapy.

Acknowledgments-This research was funded by the United States Department of Energy, Office of Science via a grant (FOA LAB 14-1099) from the Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics.

Funding Agency

United States Department of Energy, Office of Science, Nuclear Physics

Email Address

mifa@lanl.gov

Presentation Type

Contributed Oral

Primary author: Dr FASSBENDER, Michael (Los Alamos National Laboratory)

Co-author: Dr MASTREN, Tara (Los Alamos National Laboratory)

Presenter: Dr FASSBENDER, Michael (Los Alamos National Laboratory)