Low-Energy Electron Scattering Facilities in Japan

SCRIT : exotic nuclei ULQ2 : proton (+ stable nuclei)

ULQ2@Sendai

SCRIT@Wako

Toshimi Suda Research Center for Electron-Photon Science Tohoku University, Sendai, JAPAN

Low-energy electron-scattering facilities

New Physics Opportunities at ARIEL May 25-27, 2022

ULQ2 @Tohoku

ULQ2 : Ultra-Low Q2 Proton Charge Radius

Ee = 10 - 60 MeV $\theta = 30 - 150 \text{ deg.}$ q = 5 - 116 MeV/cTwin spectrometers

SCRIT @ **RIKEN/RIBF**

SCRIT : Self-Confining RI-Ion Target e-scattering off exotic nuclei

Ee = 150 - 300 MeV $\theta = 30 - 60 \text{ deg.}$ q = 78 - 300 MeV/c

New Physics Opportunities at ARIEL May 25-27, 2022

Proton Charge Radius as of today

Proton Radius (fm)

The ULQ2 project at Tohoku

- 1) Extreme low Q^2 : 0.0003 $\leq Q^2 \leq 0.008$ (GeV/c)².
- 2 e+p absolute cross section with $\sim 10^{-3}$ accuracy.

 \rightarrow relative measurement of e+C and e+H with CH₂ target

③ Rosenbluth separated $G_E(Q^2)$ and $G_M(Q^2)$.

$$\Rightarrow Ee = 10 - 60 \text{ MeV}, \theta = 30 - 150^{\circ}$$

ULQ2 setup at ELPH, Tohoku Univ.

New Physics Opportunities at ARIEL May 25-27, 2022

Twin spectrometers

New Physics Opportunities at ARIEL May 25-27, 2022

 $\begin{cases} x_d = x_0 + (x_d|\delta)\delta + (x|\delta^2)\delta^2 + (x_d|\Delta\theta^2)[\Delta\theta - \theta_0]^2 + (x_d|x_b)x_b \\ y_d = [(y_d|\Delta\theta) + \delta(y_d|\delta\Delta\theta)]\Delta\theta + (y_d|y_b)y_b \end{cases}$

Parameters	Spectrometer 1	Spectrometer 2
$x_0[mm]$	4.9	-1.8
$(x_d \delta)[ext{mm}]$	866.1(7)	862.4(7)
$(x_d^2 \delta)[ext{mm}]$	-174(26)	-164(26)
$(x_d \Delta heta^2)[10^{-4}$ mm/mrad $^2]$	-4.1(2)	-3.6(2)
θ_0 [mrad]	-2.9(5)	6.8(6)
$(y_d \Delta heta)[$ mm/mrad $]$	0.999(4)	0.997(3)
$(y_d \delta\Delta heta)[$ mm/mrad $]$	2.01(14)	1.92(11)
$ig (x_d x_b),(y_d y_b)[ext{mm/mm}]$	~ 0.5 , 1.8	

- Construction : 2018 ~ (Corona + earthquake)
- Commissioning : mostly completed.
- Ready to start physics run from this year
- low-energy electron scattering for ²⁰⁸Pb etc..

New Physics Opportunities at ARIEL May 25-27, 2022

SCRIT@Wako **SCRIT** @ **RIKEN/RIBF**

(Self-Confining RI Ion Target)

Nuclei ever studied by electron scattering New Physics Opportunities at ARIEL

H.deVries, C. deJager and C. deVries Atomic Data and Nuclear Data Tables 36 (987)495

strictly limited to stable nuclei (+ long-lived)

never applied for exotic nuclei (short-lived)

world's first e-facility for exotic nuclei

Electron Ring (SCRIT equipped) New Physics Opportunities at ARIEL May 25-27, 2022

RIKEN SCRIT Electron Scattering Facility

WiSES (Window-frame Spectrometer for Electron Scattering)

RIKEN SCRIT Electron Scattering Facility New Physics Opportunities at ARIEL May 25-27, 2022

SCRIT (Self-Confining RI Ion Target) New Physic

New Physics Opportunities at ARIEL May 25-27, 2022

SCRIT electrodes

Commissioning : ¹³²Xe(e,e')

	Ee	N _{beam}	target thickness	L
Hofstadter's era (1950s)	150 MeV	~ 1nA (~10 ⁹ /s)	~10 ¹⁹ /cm ²	~10 ²⁸ /cm ² /s
JLAB	12 GeV	~100µA (~10¹⁴ /s)	~10 ²² /cm2	~10 ³⁶ /cm ² /s
SCRIT	150-300 MeV	300 mA (~10 ¹⁸ /s)	~10º /cm²	~10 ²⁷ /cm ² /s
			~10 ⁷ trapped i in e-beam o ~1 mm ²	ions of

required target thickness ~ 10⁻¹⁰ !!

New Physics Opportunities at ARIEL ERIS (Electron-beam-driven RI separator for SCRIT)

May 25-27, 2022

Target&Heater

On-going Physics Program

New Physics Opportunities at ARIEL May 25-27, 2022

H.deVries, C. deJager and C. deVries : ADNDT 36 (987)495

new physics opportunity for low-E e-scattering

n-th moments of charge distribution and neutron distribution

H. Kurasawa and T. Suzuki, Prog. Theor. Exp. Phys., 2019, 113D01H. Kurasawa, T. Suda and T, Suzuki, Prog. Theor. Exp. Phys., 2021, 013D02H. Kurasawa and T. Suzuki, Prog. Theor. Exp. Phys. 2022 023D03

Haruki Kurasawa¹ and Toshio Suzuki^{2,*}

Charge density and its moments

1) charge density $\rho_{c}(r) = \rho_{c}^{p}(r) + \rho_{c}^{n}(r)$ $\rho_{c}^{n}(r) = \int \rho_{p}(r) \rho_{p(point)}(r - r') d^{3}r'$ $\rho_{c}^{n}(r) = \int \rho_{n}(r) \rho_{n(point)}(r - r') d^{3}r'$ 2) 2nd moment $structure \text{ theories} \qquad \text{Proton Neutron}$ $q = \int r^{2} \rho_{c}(r) d^{3}r = \langle r_{p(point)}^{2} \rangle + \langle r_{p}^{2} \rangle + \frac{N}{Z} \langle r_{n}^{2} \rangle + \text{rel. corr.}$

3) 4th moment

Charge density distribution of ²⁰⁸Pb

<r4> moments of 48Ca, 208Pb

New Physics Opportunities at ARIEL May 25-27, 2022

H. Kurasawa, T. S. and T, Suzuki, PTEP, 2021, 013D02

		R_p	R_n	δR
⁴⁸ Ca	Rel. Non.	3.378(0.005) 3.372(0.009)	3.597(0.021) 3.492(0.028)	0.220(0.026) 0.121(0.036)
	Exp.		$R_c = 3.451(0.00)$	9)

$$\langle r_c^4 \rangle = \int r^4 \rho_c(r) \,\mathrm{d}^3 r$$

D no hope to determine $\rho_c(r)$ precisely for low *L* e-RI facility

Coulomb distortion

phase shift calculation for cross section essential

no discussion based on charge form factors

Rn determination at extremely low-q (e,e')?

- precise $\sigma(\theta)/\sigma(\theta_0)$ with the twin spectrometers
- phase-shift calculations are underway
- short beam time for feasibility test this fall

if we find it works, apply to exotic nuclei at SCRIT !!

Low-energy electron-scattering facilities in Japan

	ULQ2 (Tohoku University)	SCRIT (RI Beam Factory/RIKEN)
Ee	10 - 50 MeV	150 - 300 MeV
θe	30 - 150°	30 - 60°
Ie	≤ 1 µA	~ 300 mA
	twin spec. (10 mSr)	WiSES (100mSr)
Physics	proton radius (+stable nuclei)	exotic nuclei
Status	ready to go	in operation
next step	R _n of stable nuclei (208Pb)	Rn, photo-nuclear response