The Montreal X-17 Project

G. Azuelos¹, D. Bryman², W.C. Chen¹, L. Doria³, M. Laurin¹, K. Leach⁴, H. de Luz⁵, J.P. Martin¹, A. Robinson¹, N. Starinski¹, R. Sykora⁵, D. Tiwari⁶, U Wichoski⁷, V. Zacek¹,

¹U. Montreal, ²UBC, ³U. Mainz, ⁴C.S. Mines, ⁵CTU Prague, ⁶Regina, ⁶Laurentian U.

Main goals:

- Verification of ATOMKI results
- Start with existing equipment and home-made electronics
- Increase acceptance \rightarrow 0.95 x 4 π
- Improve statistics & angular resolution
- Eventually extend to other nuclei: ¹⁰B, ¹²C, ⁴He

⁸Be levels

UdeM 6 MV Tandem Van de Graaff Facility

- 2 μA proton beam on target (possibly up to 20 μA)
 - E resolution of 2 keV for $E_p = 0.4 - 1 MeV$

٠

The Montreal X-17 Project

- Use parts of the DAPHNE experiment (Saclay/Mainz*)
- Tracking MWPC chamber & 16 scintillators (NE102A)
- Scints & MWPC from U. Mainz \rightarrow now @ Montreal
- Phototubes and some ADC/TDC's borrowed from TRIUMF

*Many thanks to L. Doria2&-Maylain22

The DAPHNE Tracking Chamber

- ID 12 cm / OD 14 cm Length 36 cm
- Cathode-anode distance: 4 mm;
- 192 Anode wires: 20 µm diam; spacing: 2mm
- 60/68 cathode strips at 45^o w.r. to wires; width 4mm
- Gas mixture: « magic gas »*

* 74.5% Ar, 25% Ethane, 0.5% Freon

- Angular res.: $\Delta \theta \sim 2^0$ (FWHM)
- Low density material to avoid EPC!

u

Testing of electronics and data acquisition with Cosmic Rays

26-May-2022

Level 1 Trigger experimental architecture for X17

VF48 and VT48 designed by J-P Martin for TRIUMF now borrowed from TRIUMF

Charge preamp card, 32 channels,

Status Set-UP

- MWPC: first wires tested with preamps & complete R/0
- 332 channels total → VF48 digitizers (TRIUMF)
- FPGA firmware ready
- Max. R/O speed: 40 kHz
- Add ΔE –scint. layer
- Add Cosmics veto

26-May-2022

Ariel workshop, Vancouver

Prototype target holder

- 1" long, 2" OD copper heat exchanger, water cooled
- SS brazed 2" Dependex rings
- Cu brazed (Ag) heat pipe support
- 4 mm x 150 mm heat pipe
 - Rated 20W @ effective length
 - 1 uA proton @ 1 MeV = 1W
 - Goal 20 uA beam -> 20W max of heat
- Target bent @ 45°
- Substrate 1/2" x 7/8" x 1/16" thick
- Brass screw to hold target and easy replace
- Tantalum beam stop disc

COMSOL simulations

- Heat transfer module
 - No radiation
 - No outside air natural convection
- Heat pipe
 - Effective thermal conductivity
 - 24 000 W/(m*K)
- Water cooling to 10°C
- Target temp below 70°C
 - 20 W heat at target from 20 uA beam.
 (Li melts at 180°C)

Test – Beam Measurements

On - going:

- Testing of DAPHNE MWPC (cosmics + beam)
- Deploy full MWPC read-out
- Be* e+ e- coincidences w. MWPC

26-Malext2 deploy the 16 DAPHNE scintillators

 Dedicated Beam Line for X17 – project

Ariel workshop, Vancouver

Test – Beam Measurements

Exploring Be* physics

- 0.8 mm thick C-beam pipe
- Target: 0.2 μm LiF (52 μg/cm²)
- Beam current: $I_p = 2 \mu A$
- γ spectra with BGO , HPGe
- 478 keV line serves as reference

Monte Carlo simulation with Geant4

MWPC

• angular resolution: 2°

Scintillator bars:

- energy resolution ~ 7 %/ $\sqrt{E(MeV)}$
- position resolution: ~ 5 cms FWHM in z direction from energy sharing and time difference at the two ends

Calibration/resolution of scintillators ongoing

- scintillator bars tested for light output and light attenuation length
- phototubes tested with LED's for gain and stability

Geant4 Simulation: Acceptances

X17 – Parameter Space to Explore in Nuclei

If X17 produced in direct E1capture (⁴He,¹⁰B..)

Angular distribution of the e⁺e⁻ pair depends on the X17 quantum numbers

Large angular acceptance allows discrimination btw. different decay modes

Motivation for a large ang. acceptance experiment!

Geant4 Simulation, reconstruction

3 basic observables for e^+e^- pair

- opening angle
 - heavy particle → small boost
 - \rightarrow large opening angle
- asymmetry: $y \equiv \frac{|E_1 E_2|}{E_1 + E_2}$
 - for low *m_{ee}*, large opening angles correlated with large asymmetry.
- invariant mass *m_{ee}*
 - preselection of large *m_{ee}* removes a lot of background and fake signals

Simulation – ⁸Be* (IPC & X17)

Full detector geometry:

- M1- IPC: E_v = 18.15 MeV
- $\Delta \theta \sim 2^0$ (FWHM); $\Delta E/E \sim 7.4\%/\sqrt{E}$
- |y| < 0.45; m(ee) > 12 MeV/c²
- $B(X/IPC) = \frac{B(X/\gamma)}{B(IPC/\gamma)} = \frac{5.8 \times 10^{-6}}{3.9 \times 10^{-3}} = 1.5 \times 10^{-3}$
- Signal/Background in region of interest:

 $S/B \approx 0.6$ $(135^0 \le \theta \le 180^0)$

-later optimization w. neural net analysis ٠
 - input raw observables •
 - account for full 4π geometrical correlations ٠
 - account for shape of IPC background instead ٠ of cuts on m(ee) and asymmetry 26-May-2022

Simulation – ⁸Be* (IPC & X17)

Full detector geometry:

- M1- IPC: E_v = 18.15 MeV
- $\Delta \theta \sim 2^0$ (FWHM); $\Delta E/E \sim 7.4\%/\sqrt{E}$
- $|y| < 0.45; m(ee) > 12 MeV/c^2$ •
- $B(X/IPC) = \frac{B(X/\gamma)}{B(IPC/\gamma)} = \frac{5.8 \times 10^{-6}}{3.9 \times 10^{-3}} = 1.5 \times 10^{-3}$
- Signal/Background in region of interest:

 $S/B \approx 0.3$ $(135^0 \le \theta \le 180^0)$

-later optimization w. neural net analysis ٠
 - account for full 4π geometrical correlations ٠
 - account for shape of IPC background instead of cuts on m(ee) and asymmetry

26-May-2022

Signal Rates: ⁸Be* IPC / X17

Where Else Can We look? Other nuclei!

		N_*	$J^{P_*}_*$	T_*	Г	$_{N_*}$ (keV)	
$^{7}Li(p,\gamma)^{8}Be$	-	${}^{8}\text{Be}(18.15)$	1+	0	M1 IV	138	
		$^{8}\text{Be}(17.64)$	1+	1	M1 IS	10.7	
$^{11}B(p,\gamma)^{12}C$		$^{12}C(17.23)$	1-	1	E1 IV	1150	
$^{3}H(p,\gamma)^{4}He$	-	$^{4}\text{He}(21.01)$	0-	0	M0	840	
		${}^{4}\text{He}(20.21)$	0^{+}	0	E0	500	
		¹⁰ B(19.3)	2- (-3+)	1	E1	280	
$^{7}Li(^{3}He,\gamma)^{10}B$		$^{10}B(18.1)$	2+ (-1+)	1	M1	< 600	
		$^{10}B(18.4)$	2- (-3+)	1	E1	280	
		$^{10}B(17.0)$	1- (-2+)	1	E1	280	

³He – beam available!

X17 – Consistency Checks

Where else can we look? Interesting Transitions in ¹⁰B!

⁷Li(³He,γ) 1988Aj01

(ENSDF) Intensities: Relative photon branching from each level

γ₁ : E= 18.1 MeV; BR= 100%; M1/E2/E3

 γ_2 : E= 18.4 MeV; BR= 18%; M1/E2/E3/M4/E5

 γ_3 : E= 19.3 MeV; BR= 24%; E1/M2/E3/M4

Weisskopf single particle estimates of $\lambda(sec^{-1})$:

$$\frac{\lambda(E1)}{\lambda(M2)} = \frac{10^{14} A^{2/3} E_{\gamma}^3}{2.2 \cdot 10^7 A^{2/3} E_{\gamma}^5} = 1.4 \cdot 10^4$$

$$\frac{\lambda(M1)}{\lambda(E2)} = \frac{3 \cdot 10^{13} E_{\gamma}^3}{7.3 \cdot 10^7 A^{4/3} E_{\gamma}^5} = 3.5 \cdot 10^5$$

We do have ³He! (7L @1b)

X - Sections for Radiative Capture of ³He by ⁷Li

Simulation – ¹⁰B* (IPC & X17)

Full detector geometry:

- Assume proto-phobic vector coupling
- E1 transitions @ 19.3/18.4 MeV:

 $B(X/IPC)_{10_B} = B(X/IPC)_{8_{Be}} \times (15 \pm 10)$

Phase space & matrix el. M1 →E1 (derived from Feng et al., 2006.01151 -- needs to be confirmed)

- S/B (in ROI) \approx 0.6 (19.3 MeV)
- $S/B (in ROI) \approx 0.8$ (18.4 MeV)

X17 – Parameter Space to Explore in Nuclei

Transition	Vector	Axial vector	Scalar	Pseudo scalar	Isospin
⁸ Be: 1 ⁺ 0 ⁺ M1-I	S L=1	L=0,2		L=1	ΔT=0
⁸ Be: 1 ⁺ 0 ⁺ M1-I	V L=1	L=0,2		L=1	ΔT=1
¹² C: 1 ⁻ 0 ⁺ E1-IV	′ L=0,2	L=1	L=1		ΔT=1
¹⁰ B: 2 ⁻ 3 ⁺ E1-IV	L=0,2	L=1	L=1		ΔT=1
¹⁰ B: 2 ⁺ 1 ⁺ M1-I	/ L=1	L=0,2		L=1	ΔT=1
¹⁰ B: 2 ⁻ 3 ⁺ E1-IV	L=0	L=1	L=1		ΔT=1
⁴ He: 0 ⁻ 0 ⁺ M0		L=1		L=0	ΔT=1
⁴ He: 0 ⁺ 0 ⁺ E0	L=1		L=0		ΔT=0

Variety of measurements could help pin down the nature of the X17 boson

The Montreal X-17 Project - Strategy

Conclusions

- UdeM experiment for independent & timely verification of results from the ATOMKI collaboration in IPC from Be*
- Experimental setup progressing and in good shape
- Large solid angle increases coverage of param. space (V, AV P, PS)
- Considering for next stage:
 - use second MWPC
 - Extend to other states & nuclei: ¹⁰B(17.8), ¹⁰B(19.3),

⁴He (22 MeV), ¹²C(17.2)

• Other searches: New JEDI, NuCReX17, Darklight, MAGIX, Na64, SHiP, SeaQuest, LHCb, PADME...

(see INFN workshop, Sept. 2021)

Backup

¹⁰B(19.28) *factor* 15

1.4

1.2

0.8

0.6

0.4

0.2

80

1

bck

bck

bc X1

120

X1

90

2×10⁻²

80

2

100 110 120

bc

bck

h2 h2 h2 Entries 100000 Entries 309609 Mean 134.3 Mean 132.8

Simulation – ¹⁰B* (IPC & X17)

- Assume proto-phobic vector coupling
- X17: M = 17 MeV/c²
- 10⁴ events generated
- |y| < 0.5; acceptance: 0.9 x 4π

Collecting PMT energy data in COL FPGA from FPGA#7

