New Opportunities for the Study of Baryon-Number Violation at Low-Energy Accelerators Susan Gardner

Department of Physics and Astronomy University of Kentucky Lexington, KY

Based on work in collaboration with Xinshuai Yan (U. Kentucky/CCNU, Wuhan)

New!

New Scientific Opportunities at the TRIUMF ARIEL e-linac May 25-27, 2022 — Vancouver

How does the neutrino get its mass? Their answers may be linked, and through observed BNV!

A Cosmic Baryon Asymmetry From particle physics?

The particle physics of the early universe can explain this asymmetry if **B** (baryon number), C (particle-antiparticle), and CP (matter-antimatter) violation all exist in a non-equilibrium environment. [Sakharov, 1967]

But what is the mechanism? The SM almost has the right ingredients: **B**? Yes, at high temperatures C and CP? Yes, but CP is "special" Non-equilibrium dynamics? No. (!) The Higgs particle is of 125 GeV in mass; lattice simulations reveal the electroweak phase transition is NOT of first-order. [e.g., Aoki, Csikor, Fodor, Ukawa, 1999] Thus we must look beyond the (MS?)SM to explain it!

Perspective

Experiment & observation reveal non-zero v masses, a cosmic BAU, dark matter, dark energy.

Experimental limits on $|\Delta B|=1$ processes are severe, but $|\Delta B|=2$ processes can be of distinct origin & are much less constrained....

[Marshak and Mohapatra, 1980; Babu & Mohapatra, 2001 & 2012; Arnold, Fornal, & Wise, 2013]

|ΔB|=2 &/or |ΔL|=2 interactions (w/ B-L violation) speak to fundamental Majorana dynamics

How does this picture change with the addition of nearly hidden (dark) sector?

The Neutron Lifetime Puzzle A darkly provocative result?

Limits on $|\Delta B| = 1$ Decays Mediated by mass dimension 6 operators in SMEFT

Fundamental Majorana Dynamics Can exist for electrically neutral massive fermions: either leptons (v's) or combinations of quarks (n's)

Lorentz invariance allows

$$\mathcal{L} = \bar{\psi} i \partial \!\!\!/ \psi - rac{1}{2} m (\psi^T C \psi + \bar{\psi} C \bar{\psi}^T)$$
 [Majorana, 1937]

where m is the Majorana mass.

A "Majorana neutron" is an entangled n and \overline{n} state, but a Majorana neutrino can be a two-component field

Bibliography:

S.G. & Xinshuai Yan, Phys. Rev. D93, 096008 (2016) [arXiv:1602.00693]; S.G. & Xinshuai Yan, Phys. Rev. D97, 056008 (2018) [arXiv:1710.09292]; S.G. & Xinshuai Yan, Phys. Lett. B790 (2019) 421 [arXiv:1808.05288]; and on ongoing work in collaboration with Xinshuai Yan

Nucleon-Antinucleon Transitions Can be realized in different ways

- Enter searches for
 - neutron-antineutron oscillations (free n's & in nuclei)
 - $\mathcal{M} = \begin{pmatrix} M_n \mu_n B & \delta \\ \delta & M_n + \mu_n B \end{pmatrix}$ "spontaneous" & thus **sensitive** to • dinucleon decay (in nuclei) $P_{n \to \bar{n}}(t) \simeq \frac{\delta^2}{2(\mu_n B)^2} \left[1 - \cos(2\mu_n Bt)\right]$

(limited by finite nuclear density)

 (low E) nucleon-antinucleon conversion Today! (mediated by external interactions) N id proceeds from detection of ~ 5π 's after annihilation low E: "prompt" ann. & low bkgd [D. Phillips II et al., Phys.Rep., 2016]]

Modeling $|\Delta B|=2$ Processes Enter minimal scalar models without proton decay

[Arnold, Fornal, and Wise, 2013; Dev & Mohapatra, 2015] Already used for $n \to \bar{n}$ oscillation without p decay

[Arnold, Fornal, Wise, 2013]

Add new scalars X_i that do not give N decay at tree level Also choose X_i that respect SM gauge symmetry and also under interactions $X_iX_jX_k$ or $X_iX_jX_kX_l$ — cf. "hidden sector" searches: possible masses are limited by experiment With this a much richer set of B and L violating

processes emerge! X_i

Context: Ον ββ Decay in Nuclei **Can be mediated by "short-" or "long"-range mechanisms** The "short-range" mechanism involves new B-L violating dynamics; e.g.,

S or V that carries B or L

For choices of fermions f_i this decay topology can yield **n-n** or $0v \beta\beta$ decay

[Bonnet, Hirsch, Ota, & Winter, 2013; Berezhiani, 2013]

The possibilities can be related in a data-driven way

[SG & Xinshuai Yan, 2019]

Cf. connection via I∆BI=1 process [Babu & Mohapatra, 2015]

Scalars without Proton Decay That also carry B or L charge Scalar-fermion couplings

$$Q_{em} = T_3 + Y$$

 $[g_i^{ab}?]$ Scalar SM Representation В L Operator(s)0 -2 Xe^ae^b [S] X_1 (1, 1, 2) $0 \quad -2 \quad XL^aL^b$ (1, 1, 1) X_2 [A] $0 \quad -2 \quad XL^aL^b$ X_3 (1, 3, 1) [S]-2/3 0 XQ^aQ^b X_4 ($\overline{6}, 3, -1/3$) [S]Note -2/3 0 XQ^aQ^b, Xu^ad^b X_5 ($\overline{6}, 1, -1/3$) [A,-]SU(3) $-2/3 \quad 0 \quad X d^a d^b$ X_6 (3, 1, 2/3) [A]rep'ns $-2/3 \quad 0 \quad X d^a d^b$ X_7 ($\overline{6}, 1, 2/3$) [S] $-2/3 \quad 0 \quad X u^a u^b$ $(\bar{6}, 1, -4/3)$ X_8 [S]1/3 -1 $X\bar{Q}^a e^b, XL^a \bar{u}^b$ (3, 2, 7/6) X_9 _,__ chiral $SU(3) \times SU(2)_L \times U(1)_V$ [?: a↔b symmetry] cf. n dark decay: (3,1, -1/3)

A Sample Model

$$\mathcal{L}_{10} \supset -g_1^{ab} X_1(e^a e^b) - g_7^{ab} X_7^{\alpha\beta} (d^a_{\alpha} d^b_{\beta}) - g_8^{ab} X_8^{\alpha\beta} (u^a_{\alpha} u^b_{\beta}) -\lambda_{10} X_7^{\alpha\alpha'} X_8^{\beta\beta'} X_8^{\gamma\gamma'} X_1 \epsilon_{\alpha\beta\gamma} \epsilon_{\alpha'\beta'\gamma'} + \text{H.c.}$$

Each term has mass dimension ≤ 4

But can generate a mass-dimension 12 operator at low energies to realize $e^- p \rightarrow e^+ \overline{p}$

There are several possible models.

Patterns of I Δ BI=2 Violation? Note possible SM gauge invariant scalar models [H.c. implied.] [SG & Xinshuai Yan, 2019]

Mode]	Mode]	Mode	 	
M1	X- X- X-		$\frac{1}{X_1 X_2 X^{\dagger}}$	M10	$X - X_{\circ} X_{\circ} X_{1}$	
IVII NЛО	$X_5X_5X_7$ V V V	л D	$\begin{array}{c} \Lambda_1 \Lambda_8 \Lambda_7 \\ V V V^{\dagger} \end{array}$		$\begin{array}{c} \Lambda \gamma \Lambda 8 \Lambda 8 \Lambda 1 \\ V V V V \end{array}$	
	$egin{array}{ccc} \Lambda 4 \Lambda 4 \Lambda 7 \ V & V & V \end{array}$	D	$\Lambda_3 \Lambda_4 \Lambda_7^+$ V V V [†]		$\Lambda_5\Lambda_5\Lambda_4\Lambda_3$ V V V V	"4 X" models
* IVI3	$X_7 X_7 X_8$		$X_3 X_8 X_4^+$	M12	$X_5 X_5 X_8 X_1$	
M4	$X_6X_6X_8$	D	$X_5 X_2 X_7^+$	M13	$X_4 X_4 X_5 X_2$	can yield
M5	$X_5 X_5 X_5 X_2$	E	$X_8 X_2 X_5^{+}$	M14	$X_4 X_4 X_5 X_3$	$e^-p \rightarrow e^+\bar{p}$
M6	$X_4 X_4 X_4 X_2$	F	$X_2 X_2 X_1^{\dagger}$	M15	$X_4 X_4 X_8 X_1$	$a \overline{n} \rightarrow \overline{1}\overline{n}$
M7	$X_4 X_4 X_4 X_3$	G	$X_3 X_3 X_1^{\dagger}$	M16	$X_4 X_7 X_8 X_3$	$e p \rightarrow \nu n$
M8	$X_7 X_7 X_7 X_1^{\dagger}$			M17	$X_5 X_7 X_7 X_2^{\dagger}$	and more!
M9	$X_6 X_6 X_6 X_1^{\dagger}$			M18	$X_4 X_7 X_7 X_3^{\dagger}$	

n-n π - π - \rightarrow e-e-[Models with $|\Delta L|=2$ always involve 3 different scalars.]

Connecting $|\Delta B| = 2$ to $|\Delta L| = 2$...

Patterns of $|\Delta B| = 2$ Violation Discovery implications for $0v \beta\beta$ decay

👞 S.G. & Xinshuai Yan, 2018

Model	$n\bar{n}?$	$e^-n \to e^-\bar{n}?$	$e^- p \to \bar{\nu}_X \bar{n}? \ e$	$e^- p \to e^+ \bar{p}?$	0 uetaetaeta ?
M3	Y	Ν	Ν	Y	Y[A]
M2	Y	Υ	Υ	Y	Y[B]
M1	Y	Υ	Υ	Ν	? [D]
	Ν	Ν	Υ	Y	? [C?]

Patterns of observation can distinguish the possibilities.

First try to see if any "XXXX" processes can be visible!

 $n\bar{n}$ limits are severe! $\tau_{n\bar{n}} > 2.7 \times 10^8 \,\mathrm{s} @ 90 \,\% \,\mathrm{CL}$

[SuperK: Abe et al., 2015]

Phenomenology of New Scalars constraints from many sources — Focus on first generation i) $n-\overline{n}$ (But some models do not produce it) ii) Collider constraints CMS: e+e+ search; cannot look at invariant masses below 8 GeV

[CMS 2012, 2014, 2016]

But beware galactic magnetic fields!

iii) $(g-2)_e$ [Babu & Macesanu, 2003][superseded by Møller expt, save for
light masses] [SG & Xinshuai Yan, 2020]Use latest exp't! [Hanneke, Fogwell, Gabrielse, 2008]light masses] [SG & Xinshuai Yan, 2020]Limit: $M_1/g_1^{11} \ge 80$ GeV $M_{X_{1,3}}/g_{1,3}^{11} \ge 2.7$ TeV @ 90 % CL [E158] (if "heavy")iii) Nuclear stability \gtrless

Rate Estimates

For $e^-p \rightarrow e^+\bar{p}$ at a low energy electron accelerator

as the electron energy decreases...

Low-Energy Electron Facilities Note illustrative parameter choices

[Hydrogen]

	Facility	Be	am	Т	Luminosity	
	raciiity	Energy(MeV)	Current (mA)	Length (cm)	Density (g/cm^3)	(cm^{-2})
	CBETA [14]	150	40	60	0.55×10^{-6}	2.48×10^{36}
	MESA [15]	100	10	60	0.55×10^{-6}	6.21×10^{35}
	Δ RIEL [16]	50	10	100	0.09×10^{-3}	1.69×10^{38}
		50	10	* 0.2	71.3×10^{-3}	2.68×10^{38}
<u>.</u>	FAST [17]	150	28.8	100	0.09×10^{-3}	4.88×10^{38}
		100	20.0	* 0.1	71.3×10^{-3}	3.87×10^{38}

*Liquid

- = proposed, ERL (internal target)
 - = ERL (e.g.)

*

- ₩ = Linac (external target)
- = Linac, ILC test accelerator

Use E=40 MeV for estimates.

$\begin{array}{l} \hline \textbf{Event Rates} \\ \textbf{Select particular scalar masses/couplings for reference} \\ \lambda_i = 1 \ M_{Xi}/g_i^{1/2} = 30 \ \text{GeV for } i = 1,2,3 \ \text{else 1GeV} \end{array}$

Rates in #/yr

 $e^{-} p \rightarrow e^{+} p$:

Facility	M7	M10	M11	M12	M14	M15	M16
CBETA [18]	1.12	0.18	0.01	0.00	0	2.24	0.45
MESA [19]	0.28	0.05	0.00	0.00	0	0.56	0.11
ARIEL [20]	76.41	12.59	0.41	0.20	0	152.69	30.68
	121.06	19.95	0.65	0.31	0	241.93	48.62
FAST [91]	220.05	36.27	1.18	0.56	0	439.75	88.37
	174.33	28.73	0.93	0.45	0	348.38	70.00

 $e^{-} p \rightarrow \overline{v}_{e} \overline{n}$

Facility	M5	M6	M7	M11	M13	M14	M16
CBETA [18]	0.00	0	0.08	0.00	0.14	0	0.02
MESA $[19]$	0.00	0	0.02	0.00	0.03	0	0.01
$\Delta \text{RIEL}[20]$	0.03	0	5.17	0.24	9.45	0	1.59
$\operatorname{AIGLDD}\left[20\right]$	0.04	0	8.19	0.38	14.97	0	2.51
FAST [91]	0.08	0	14.88	0.70	27.20	0	4.57
	0.06	0	11.79	0.55	21.55	0	3.62

23 [S.G. & Xinshuai Yan, in preparation]

Still Broader Possibilities Different channels connected by vector addition

[Heeck & Takhistov, 2020]

Summary

- -New, possible avenues for B (& L) NV (by 2 units & more) have been largely overlooked
- —These studies may provide new insights into the nature of the neutrino mass
- -Light hidden sectors that could help mediate mass rare processes associated with dim ≥ 9 operators are not excluded by existing experiments
- We have noted the existing constraints & the discovery potential of some possible new experiments
- -These possibilities could be explored at intense, low E electron accelerator facilities & strengthen interest in $|\Delta B| = 2$ experiments of increased sensitivity!

Backup Slides

[[]Berryman, SG, & Zakeri, 2022]

Patterns of IABI=2 Violation? Note possible BNV processes

[SG & Xinshuai Yan, 2019]

nn	$\pi^-\pi^- ightarrow e^-e^-$	$e^- p \rightarrow \bar{\nu}_{\mu \tau} \bar{n}$	$e^- p \rightarrow \bar{\nu}_e \bar{n}/e^+ \bar{p}$	$e^- p \rightarrow e^+ \bar{p}$
 \/[1	۸	Μ5	<u>л су г</u> М7	
	Λ D (*)	IVIJ MG	IVI / N/1 1	
	D C(*)			
IVI3		IVI I 3	M14	IVI I 5
			M16	

Also support $nn \rightarrow \bar{\nu}\bar{\nu}$

Dark Aftermaths? Particular models are excluded as explanations of the entire anomaly Direct search: $n \rightarrow \chi \gamma$ [Tang et al., PRL, 2018] $n \rightarrow \chi e^+ e^-$ [Sun et al., 2018; Klopf et al., PRL, 2019] These models (to explain the entire anomaly) also run afoul of the existence of 2 M_{\odot} neutron stars (unless χ is self-interacting or heavy) [McKeen et al., 2018; Baym et al., 2018, Motta et al., 2018]

Using measured n decay "A" (PERKEO III, UCNA) & the SM & UCNT also leaves little room for dark decay $Br_{\chi} < 0.28 \% (95 \% CL)$ [Dubbers et al., 2019]

Limits on Nucleon ($|\Delta B| = 1$) Partial Lifetimes 90% C.L. upper limits

 τ_{BNV} [yr] [compilation: Berryman, SG, & Zakeri, 2022]

Neutron-Antineutron Conversion Different mechanisms are possible

- n-n conversion and oscillation could share the same "TeV" scale BSM sources
 Then the quark-level conversion
 - operators can be derived noting the quarks carry electric charge
- * n-n conversion and oscillation could come from different BSM sources
 - → Indeed different $|\Delta B|=2$ processes could appear (e.g., e⁻ p → e⁺ \overline{p})

NN conversion

